
SANDIA REPORT
SAND # Pending
Unlimited Release (Pending R&A)
Printed September 2017

The Capability Portfolio Analysis Tool (CPAT):
A Mixed Integer Linear Programming Formulation for
Fleet Modernization Analysis (Version 2.0.2)

Lucas A. Waddell, Frank M. Muldoon,Stephen M. Henry,
Matthew J. Hoffman, April M. Zwerneman, Peter B. Backlund,
Darryl J. Melander, Craig R. Lawton, Roy E. Rice

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND # Pending
Unlimited Release (Pending R&A)

Printed September 2017

The Capability Portfolio Analysis Tool (CPAT):

A Mixed Integer Linear Programming Formulation for Fleet

Modernization Analysis (Version 2.0.2)

Lucas A. Waddell1, Frank M. Muldoon1, Stephen M. Henry1, Matthew J. Hoffman2,

April M. Zwerneman3, Peter B. Backlund4, Darryl J. Melander5, Craig R. Lawton3,

Roy E. Rice6

1 Systems Readiness and Sustainment Technologies, Org 8833

2 Operations Research and Computational Analysis, Org 8831

3 Mathematical Analysis and Decision Science, Org 8834

4 Systems Technology, Org 5837

5 Software Systems R&D, Org 9365

Sandia National Laboratories

P.O. Box 5800, Albuquerque, New Mexico 87185

6Teledyne Brown Engineering

300 Sparkman Drive, Huntsville, AL 35805-1912

Abstract

In order to effectively plan the management and modernization of their large and diverse fleets
of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program
Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis-
sioned the development of a large-scale portfolio planning optimization tool. This software,
the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally
prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous
business rules associated with fleet structure, budgets, industrial base, research and testing,

3

etc., while maximizing overall fleet performance through time. This paper contains a thor-
ough documentation of the terminology, parameters, variables, and constraints that comprise
the fleet management mixed integer linear programming (MILP) mathematical formulation.
This paper, which is an update to the original CPAT formulation document published in
2015 (SAND2015-3487), covers the formulation of important new CPAT features.

4

Contents

Preface 9

Nomenclature 11

1 Business Rules 15

System Transition Flow . 15

Mission Priority Tiers . 17

Transition Delays . 18

General Scheduling Rules . 18

Budgets . 20

Product Families . 21

Low-Rate Initial Production . 23

Coasting Systems . 23

Future Programs . 24

2 Formulation Indices, Sets and Tuples 25

Formulation Indices . 25

Useful Sets and Tuples . 26

Fleet Structure and Flow . 26

Optimization Tiers . 27

Modernization Scheduling . 28

Product Families . 29

Coasting Systems . 30

5

Future Programs . 31

3 Model Input Parameters 33

Optimization Tiers and Phases . 33

Fleet Structure and Flow . 34

Modernization Scheduling . 36

Cost & Budgets . 38

Future Programs . 40

Auxiliary Parameters . 40

4 MILP Decision Variables 43

Non-Negative Integer Variables . 43

Binary Variables . 45

Continuous “Binary” Variables . 46

Non-negative Continuous Variables . 47

5 MILP Variable Expressions 49

Fleet Structure and Flow . 49

Low-Rate Initial Production . 53

Storage . 54

Cost and Budgets . 56

Production . 66

Product Families . 69

Objective Function . 70

6 MILP Constraints 75

Multi-Tier, Multi-Phase Constraints . 75

System Flow Conservation Constraints . 79

6

General Scheduling Constraints . 83

Budget Constraints . 87

Group Density Levels . 91

System Production Constraints . 93

Product Family Constraints . 94

LRIP Constraints . 101

Production Smoothing Constraints . 103

Coasting Systems Constraints . 104

Future Program Constraints . 106

7

List of Figures

1 CPAT Fleet and Storage Structure . 11

8

Preface

Program executives face the perpetual fleet management challenge of devising investment
strategies to assure optimal fleet modernization and to mitigate system obsolescence. These
investment plans must be comprehensive, ensuring a balance between capability, schedule
and cost. This is particularly true for the Ground Combat Systems (GCS) and Tactical
Wheeled Vehicle (TWV) fleets within the United States Army. Here, capability require-
ments must be met without violating increasingly strict expenditure limits, which are made
in various categories including procurement, recapitalization, operations & support (O&S),
and research, development, testing & evaluation (RDT&E). In addition to these demanding
budgetary considerations, secondary effects on the industrial base must be carefully inte-
grated, along with numerous other business rules associated with the fleets. This paper
presents a mixed-integer linear programming model that helps decision-makers create and
evaluate real-world fleet-wide modernization plans. While comprehensive in scope, this pa-
per’s concentration on the mathematical formulation itself may fail to elucidate more general
modeling approaches, assumptions, and thought processes. Hence, this document should be
read in conjunction with the CPAT Domain Model1, which presents the CPAT methodol-
ogy from the perspective of an outside analyst not possessing intimate knowledge of the
mathematical formulation.

This paper serves as an update to the original Capability Portfolio Analysis Tool (CPAT)
formulation document, which was published in 20152. All relevant content from the original
publication remains in the interest of completeness. In addition, the following new CPAT
features are integrated throughout the formulation:

• Components – A “component” is a division of the fleet into separate operational units
with similar structure.

• Batch Sizes – Batch size refers to the smallest increment of a system that may be
purchased.

• Maximum Time New Systems are in Storage – The analyst may specify an upper limit
on the amount of time a new system may spend in storage before being fielded.

1Waddell, Lucas A., Frank M. Muldoon, Darryl J. Melander, Peter B. Backlund, Stephen M. Henry,
Matthew J. Hoffman, April M. Zwerneman, Craig R. Lawton, Roy E. Rice, “The CPAT 2.0.2 Domain Model
– How CPAT 2.0.2 “Thinks” From an Analyst Perspective,” Sandia National Laboratories, Albuquerque,
NM SAND# Pending.

2Henry, Stephen M., Frank M. Muldoon, Matthew J. Hoffman, Gio K. Kao, Craig R. Lawton, Darryl
J. Melander, Liliana Shelton, “The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear
Programming Formulation for Fleet Modernization Analysis,” Sandia National Laboratories, Albuquerque,
NM SAND2015-3487.

9

• Minimum Cumulative Delivery – The analyst may specify a minimum cumulative pro-
duction for each product family.

• Product Family Obviation – The analyst may specify that a product family obviates
one or more other product families. I.e., if and when a system from that product
family is produced, systems from the obviated product families cannot be produced
any longer.

• Product Family Ratios – The analyst may specify product family ratios which require
that systems produced from a family must be distributed among components according
to that ratio.

• System Coasting – The analyst may specify some systems as “coastable.” A coastable
system may be delivered into future time periods at the same rate that it was delivered
in the final conventional time period.

• RDT&E Active Costs – Similar to procurement active costs, the analyst may specify
an amount of RDT&E costs to be incurred in each period that a product family is
active. This is in addition to any upfront RDT&E costs a product family may have.

• Component Earmarks – Money may be allocated to purchases and upgrades of systems
in a specific component (beyond the general combined expenditures budget).

• Product Family Earmarks – Money may be allocated to purchases and upgrades of sys-
tems in a specific product family (beyond the general combined expenditures budget).

• Economic Useful Life – All systems in the fleet are given an economic useful life,
which is the maximum age the system is allowed to be before it must be retired from
a mission.

• Arbitrary Phase Ordering – The analyst may specify the optimization phase ordering to
whatever suits their current analysis needs (e.g., schedule, age, yearly budget, horizon
budget, performance, and cost).

• Optional Storage Upgrades – The analyst has the option to specify for each upgrade
whether that upgrade can be done in storage.

• Hard Limits on Tier Phases – The analyst has the ability to enforce hard constraints
on any of the phase objective metrics.

• Disallow Instantaneous Cross-Mission Transfers – Systems retired in any time period
cannot be immediately re-fielded in the same time period.

• Allow Overlap in System Obviations – The analyst may specify a number of time
periods in which both systems (the obviated and the obviating) can be delivered.

10

Nomenclature

Mission1

Mission2

Mission3

Mission4

Set1

Mission5

Mission6

Set2

Group1

Group1

Fleet

Group2

Group2 Group3

Mission1

Mission2

Mission3

Mission4

Mission5

Mission6

Group1 Group2

Group1

Set2

Set1

Component 1 Component 2

Storage

= single system

Component 2

Component 1

Figure 1. CPAT Fleet and Storage Structure

Fleet: The regimented collection of systems whose performance contributes to the opti-
mization’s objective function (i.e., the systems that are actively fulfilling mission roles
belonging to components). The fleet’s composition is altered through time as new
systems are introduced and old systems are taken out, though the size of the fleet is
always constant. Systems in storage are not considered part of the fleet.

Component: A division of the fleet into separate operational units with similar structure.

Set: A high-level partition of a component. Each set is itself partitioned into equal groups,
and each set’s partitioning can be unique.

Group: The equi-partitioning of a set. Each group is itself partitioned into heteroge-
neous missions. Each group within a set is partitioned identically by mission. In
Army parlance these groups are called “brigades,” and we will often use this term
interchangeably.

Mission: The partitioning of a group into areas of unique operational responsibility. Every
group within a set is partitioned in an identical manner by mission. The lowest level
fleet modernization decisions made by CPAT are for a mission within a group, and
often when this document refers to a “group” or a “mission” being modernized, it is
meant as a shorthand for “a mission within a group.”

11

System: A resource that fulfills a mission with a certain performance level. Systems are
the individual units which are being upgraded, purchased, and swapped within the
fleet by the CPAT optimization algorithm.

Storage: A conceptual holding area for systems which are not in the fleet. Systems in
storage are assigned to a component and can flow into and out of storage via a variety
of mechanisms.

Transition/Fielded/Modernize: General terms referring to any substitution event that
alters the composition of the fleet (i.e., one system type is switched over to another
type within a mission). This conversion may happen via a mission upgrade or a storage
swap.

Mission Upgrade: A transition that occurs within the context of a mission wherein the
original system is consumed in the creation of the new system. While the upgrade is
in progress, the mission still “gets credit” for the performance of the original system.
Upon completion, the new system is delivered to the mission.

Storage Swap: A transition that occurs within the context of both storage and a mission.
Here the original system in the mission is taken out and placed in storage. The new
system is taken out of storage and placed in the mission. Note that storage swaps are
free and instantaneous, since the new system is already in storage and waiting to be
used. However, the process of getting that new system in storage is most likely neither
free nor instantaneous (i.e., via a purchase or storage upgrade).

Purchase: The acquisition of a new system that previously did not exist. Newly purchased
systems are placed into a component in storage and are immediately available for
introduction into the fleet via a storage swap. Purchases are not considered transitions,
since they do not directly alter the composition of the fleet.

Storage Upgrade: An upgrade that happens in any component in storage (outside the
context of the fleet). Here the original system in storage is consumed in the creation
of the new system which is placed in storage and immediately available to be fielded
to the fleet via a storage swap. Note that storage upgrades are not categorized as a
transition, since they do not directly alter fleet composition.

Delivery: The completion of production (as defined by the admin and/or production
delays) for a system. When a mission upgrade completes production, the new system is
delivered to the mission in a specific component. When a purchase or storage upgrade
completes production, the new system is delivered to storage. Depending on user
specifications, when systems are produced by an LRIP profile, some of the produced
systems may be delivered to storage, while others may disappear (destroyed in testing,
for example) and never enter storage.

Fielding: The act of placing systems into a mission in a component.

Spoken For: A system is “spoken for” if it is in the process of upgrading from one type
to another. More specifically, systems are spoken for when they are in the production

12

period(s) of an upgrade; they are not spoken for during administration periods. We
use this notion because systems are still considered in mission or in storage throughout
the upgrade process. Hence, we need a way to delineate which systems are already
being worked on and which ones are not.

Procurement: A term referring to expenses incurred in the process of modernizing sys-
tems. Upgrade, purchase, LRIP, product family start-up and per-period procurement
costs all fall under this category.

Product Family: A collection of system types that share production costs, RDT&E costs,
and/or resources.

Conventional Time Horizon: Any time period t where t ≤ T . Highest fidelity decisions
are made during the conventional planning horizon.

Extended Time Horizon: Any time period t where T < t ≤ T . Lower fidelity decisions
regarding future programs and coasting systems are made during the extended planning
horizon.

13

This page intentionally left blank.

Chapter 1

Business Rules

Before presenting details of the mathematical formulation itself, we first outline the set of
business rules that govern the behavior of our fleet modernization model. In outlining these
rules, and the formulation at large, many terms will have a specific meaning that facilitates
ease of interpretation. See the Nomenclature section at the beginning of this document for
a list of common vocabulary conventions.

The business rules below each correspond to a set of parameters, constraints, and ex-
pressions within the optimization model. However, some constraints or expressions play
an auxiliary role not directly corresponding to a specific business rule; others may address
multiple business rules simultaneously.

System Transition Flow

• Constant System Population: Throughout the planning horizon, each mission
within a group for all components always maintains a constant number of systems.
Every change to the fleet consists of either modifying existing systems or removing
some number of systems from the fleet and putting an equal number of different sys-
tems in their place.

• Group Purity: At any given time, the systems serving a particular mission within a
particular group in a component must all be of the same system type. Different groups
in the same or different components can each be using a different system type for that
mission, and different missions within the same group may be using different system
types, but a single group cannot mix system types within a mission.

• Outflow Availability: For any time period, the number of systems of a given type
in a mission in a component that are upgraded or swapped to storage may not exceed
the number currently exchangeable. Similarly, the number of systems of a given type
in storage that are upgraded or sent to a mission in a component may not exceed the
number currently exchangeable. In both cases, the number currently exchangeable is
given by the current number present minus the current number in the process of being
upgraded.

• Initial Populations: Each mission in each component has an initial population of
systems that is already in the fleet and is immediately available to begin modernization.

15

There may also be an initial population of systems in storage assigned to components
which are also immediately available to begin upgrading or swapping into missions in
that component. In other words, no initial systems are “spoken for” in the first time
period.

• Storage Flow: Systems enter and exit storage through the following means: 1) pur-
chases put new systems directly into a particular component in storage, 2) storage
upgrades take one system type already in storage and turn it into another type in the
same component, and 3) storage swaps take one system type out of a mission from a
component and into storage into the same component while taking another type out
of storage from the component and sending it to the mission in that component. Once
in storage, a system is immediately available for any type of flow action with one ex-
ception: a system cannot be swapped into and out of the same mission in the same
component in the same time period.

• No Pre-Usage Upgrades: Newly purchased systems in storage in any component
that have not yet been sent to a mission should not be upgraded while in storage.

• Optional Pre-Purchasing: Systems may be purchased or in storage upgraded before
they are actually needed to be fielded to a mission in a component. However, this ability
is optional and may be disallowed by user choice.

• Optional Storage Upgrades: Systems may be upgraded in mission or in storage
for any component. The user has the option to specify for each upgrade whether that
upgrade can be done in storage.

• Delivery Implies Fielding: System types whose procurement cost is non-zero can
only be delivered to a component if they are also subsequently fielded to a mission in
that component. (Note that delivery of these systems from production and fielding
can occur at different times.) Only system types that can be procured for free (usually
hull systems) can be delivered to a component without also being fielded.

• No Retire and Re-Fielding: Systems that are retired from a mission in a particular
component and sent to storage cannot be immediately sent back into that same mission
and same component during that same time period.

• 1-Year Duty Minimum: Systems in a mission in any component must remain for at
least 1 time period before they can be swapped out or spoken for by a mission upgrade.

• Fielding New Systems From Storage: New systems delivered to storage via pur-
chases or in storage upgrades may only remain in storage for a user defined number of
time periods. Additionally, any LRIP systems or systems in initial storage may only
remain in storage for the user-specified number of time periods, beginning in the first
time period that non-LRIP production is completed.

• Disallow Instantaneous Cross-Mission Transfers: Systems retired from a mission
in a component in any time period cannot immediately be re-fielded to another mission
in a component in the same time period.

16

Mission Priority Tiers

• Priority Tiers: Fleet missions in any component may be partitioned into priority tiers
wherein each tier comprises a separate optimization. The modernization of missions
in all components in the highest priority tier is performed first, with subsequent tiers
being modernized separately with the remaining budget. Note that all other business
rules must hold in toto across all tiers. For example, if a product family disallows
production gaps, then it may only be started up once even if it fields systems to
missions in components across multiple tiers; it is not allowed to start up separately
for each tier.

• Tier Phases: Within each tier, there are six separate optimization phases. The user
can determine which phases are executed, and in which order, depending on the analysis
question being answered. The optimized value in each phase becomes a constraint on
later phases. The phases are:

– Minimize schedule mandate violations

– Minimize economic useful life violations

– Minimize yearly budget violations

– Minimize horizon (cumulative) budget violations

– Maximize fleet performance

– Minimize cumulative combined costs

If the user selected all six phases in the order above (not typical), they would be
executed as follows. The first minimizes schedule violations; the second minimizes
economic useful life violations while not allowing schedule violations to increase, the
third minimizes yearly budget violations while not allowing either schedule or economic
useful life violations to increase; the fourth minimizes horizon budget violations while
not allowing schedule, economic useful life, or yearly budget violations to increase;
the fifth maximizes fleet performance while not allowing schedule, economic useful life,
yearly budget, or horizon budget violations to increase; the sixth minimizes cumulative
combined fleet costs while preserving fleet performance and not allowing schedule,
economic useful life, yearly budget, or horizon budget violations to increase.

Mandates, economic useful life constraints and budget violations were all chosen to be
minimized penalties rather than hard constraints. This ensures that if such business
rules must be broken, the phase ordering prevents trade offs between violations and
the user can diagnose the issue. Costs are often minimized after the performance
maximization phase to ensure performance is achieved via the most intelligent possible
allocation of budget resources and lower tiers, which use the left-over budget from
higher tiers, will have the best possible opportunity for modernization.

• Hard Limits on Tier Phases: CPAT provides analysts with the ability to enforce
hard constraints on any of the phase objective metrics. For example, the analyst
may specify that the total number of economic use violations must be less than X,

17

or that the fleet’s cumulative performance must be greater than Y. These limits must
be satisfied in all optimization phases. This capability allows the analyst to answer a
myriad of questions such as “what is the cheapest fleet modernization plan with less
than X economic useful life violations?” and “what is the smallest horizon budget
violation required to achieve a fleet with at least Y cumulative performance?”

• Component Mission Succession: One mission in a specific component can be desig-
nated to succeed another mission in the same or a different component so that nothing
can be fielded to the succeeding mission in that component until the preceding mission
in the specified component has 1) completely finished fielding and 2) modernized 100%
of its original systems. This is typically used for corresponding missions in different
components (i.e., the IFV mission in the Active Army component must be fully up-
graded before the IFV mission in the National Guard component), but can also be
used for missions in the same component.

Transition Delays

• Delay Partitioning: When upgrading from one system to another (whether in a
mission or in storage for any component) or purchasing a new system, there may be a
delay between when the new system is paid for and when it is delivered. This delay is
partitioned into an administrative delay (where the system has been paid for but is not
yet in production) followed by a production delay (where the system is in production
but is not yet delivered). These delays must be accounted for. Default administrative
and production delay = 0 periods.

• Upgrade Admin Delays: For any upgrade having admin and production delays,
the admin period is allowed to begin even if the seed system is not yet on hand.
However, the seed system must be on hand in order to begin the first production
period. Intuitively, this means that “upgrade paperwork” (i.e., the admin period) can
be started in anticipation of the soon to arrive system. Stated another way, while in
admin periods a system is not yet “spoken for.”

General Scheduling Rules

• System Modernization Requirements: System types in the initial fleet may re-
quire that a certain percentage be transitioned out before a specified time period. This
percentage is applied across the fleet and is not specific to systems in each component.
This modernization must be performed. Default requirement = 0%.

• System Mandates: Missions in each component may mandate that a minimum
number of a particular system type be in that mission in that component during the
final time period. This minimum must be met. Default minimum = 0.

18

• Per-Period Mission Modernization Limit: Missions may place an upper bound
on the number of groups that can modernized per time period over all components.
These upper bounds must be respected. Default bound = unlimited.

• Cumulative Mission Modernization Limit: Missions may place an upper bound
on the cumulative number of groups of initial systems that can ever modernized over
all components. These upper bounds must be respected. Default bound = unlimited.

• Minimum Group Transition Density: Missions may require that if a transition
occurs, then it must occur for at least a certain number of groups across all components.
These transition requirements may be specified for up to 3 density levels, which operate
as follows:

Levels = {12,−,−} implies that a transition must occur for at least 12 groups.
Levels = {12, 16,−} implies that a transition must occur for at exactly 12 or at

least 16 groups.
Levels = {12, 16, 20} implies that a transition must occur for exactly 12 or exactly

16 or at least 20 groups.
Default Levels = {−,−,−}.

• Minimum Group Final Density: Missions may require that the number of groups
of non-initial systems in the mission across all components during the final time period
meet certain densities. These densities may be specified by up to 3 levels, which operate
analogously to the Minimum Group Transition Densities. Default Levels = {−,−,−}.

• System Obviation: A system type may be obviated by any other system type so
that the obviated system can only be delivered prior to any deliveries of the obviating
system, with the option to specify a number of overlap time periods in which both
systems can be delivered. This applies to systems in any mission and in any component.

• Synchronization Sets: A collection of missions and systems within those missions
in a specific component may be required to modernize or divest simultaneously. For
example, if mission M1 uses system S1 in component C and M2 uses S2 in component
C, and additionally these missions and systems are part of a sync set, then the number
of groups of S1 entering or exiting M1 in component C must equal the number of
groups of S2 entering or exiting M2 in component C for all time periods.

• Storage Consumption Priority: Certain systems in storage may take consumption
priority over certain other systems. This means that for each component in storage if
the higher priority system in that component is exchangeable in storage, then it must
be used as an upgrade seed before the lower priority system in that component can be
used as an upgrade seed.

• Upgrades Trump Purchases: For some systems, modernization must be accom-
plished via upgrades, if possible. For each component, a new purchase is allowed only
if no seeds systems are available for the upgrade in that component.

• Economic Useful Life: Certain systems may have an upper bound on the number
of time periods that they can spend in a mission in any component. Once a system

19

reaches that specific limit or age then it must be retired from service. This rule does
not apply to terminal systems (i.e., systems that cannot be transitioned to any other
system).

Budgets

• Per-Period Budgets: The amount of money spent each period in the 3 categories
of Procurement, O&S, and RDT&E must not violate associated per-period budgets
for these expense types. Furthermore, a user-specified combination of these 3 per-
period budget types must not violate a per-period combined budget. These budgets
must be respected by both future and non-future system expenditures throughout the
conventional and extended time horizons. Default budgets = unlimited.

• Cumulative Budgets: The total amount of money spent throughout the conventional
plus extended time horizon in the 3 categories of Procurement, O&S, and RDT&E
must not violate associated cumulative budgets for these expense types. Furthermore,
a user-specified combination of these 3 budget types (matching the per-period budget
combination) must not violate a combined cumulative budget. These budgets must
be respected by both future and non-future system expenditures. Default budgets =
unlimited.

• Component Earmarks: Additional money, above the per-period budget, may be
allocated to purchases and upgrades of systems in a specific component in a specific
conventional or extended time period. An earmark does not require purchases and
upgrades of at least that amount to be spent for that component, but it does not allow
any portion of the earmark to be spent for the purchases and upgrades in another
component. Default earmarks = 0.

• Product Family Earmarks: Additional money, above the per-period budget, may
be allocated to active costs, startup costs, LRIP, RDT&E, purchases, and upgrades
of systems in a specific product family in a specific conventional or extended time
period. An earmark does not require at least that amount to be spent for that product
family, but it does not allow any portion of the earmark to be spent for active costs,
startup costs, LRIP, or RDT&E of any other product family or for the purchases and
upgrades of systems not in the specified product family. When a system is purchased
or upgraded in a time period in which it could charge either a product family earmark
or a component earmark, the product family earmark is charged. Default earmarks =
0

• Early/Late Transition Charging: No transition may take place in a time period
early enough so that associated costs (whether transition, long lead, or product family
start-up costs) would be incurred prior to the start of the time horizon. Similarly, no
transition may occur in time periods late enough that associate product family start-up
costs would be incurred after the end of the time horizon.

20

• Long Lead: Some system types may have long lead on their procurement. This means
that a certain percentage of their procurement cost is incurred one year earlier than
normal. (Remember that normally procurement costs are incurred during the first
admin period.)

Product Families

• Active Product Families: Multiple system types can be clustered together into
a single product family, with the interpretation that these systems share production
facilities and/or RDT&E efforts. A product family is considered “active” (thus incur-
ring per-period procurement and RDT&E costs) during a time period if any member
systems are 1) in administrative delay, 2) in production delay, or 3) being delivered
and the production delay is 0. Note that both low-rate initial production (LRIP) and
full-rate production (FRP) count towards these three conditions, even if the LRIP is
being incurred for a separate product family.

• Family Start-Up Costs: Each product family may have an associated start-up cost
profile that must be incurred when the family first begins work for full-rate production.
That is, when the family is 1) in administrative delay, 2) in production delay, or 3)
being delivered and the production delay is 0 for the first non-LRIP systems. These
costs are allocated to missions in components using a system density weighting method
(see the CPAT Domain Model document for more info.) Default start-up cost = $0.

• Family Per-Period Costs: Each product family may have an associated per-period
procurement cost and/or per-period RDT&E cost that must be incurred every time
period that the family is active. Note that a family is active even if its member
systems are being produced for LRIP of another family. Like Family Start-Up Costs,
these costs are allocated to missions in components using a system density weighting
method. Default per-period cost = $0.

• Family Minimum Per-Period Delivery: For each product family, there may be a
required minimum number of systems to be delivered from that product family in any
specific time period. These lower bounds on delivery for each product family must be
met. LRIP delivered does not count towards this minimum. Default minimum delivery
for each product family and time period is 0.

• Family Maximum Per-Period Delivery: For each product family and time period,
there may be an upper limit on the number of member systems delivered during that
period. These limits must be respected, although LRIP does not count towards this
capacity. Default capacity = unlimited.

• Family Minimum Cumulative Delivery: For each product family, there may be a
lower limit on the cumulative number of member systems that are ever delivered from
the family if any systems are delivered from the family. These limits must be respected.
All produced LRIP and coasting systems count towards this capacity. Default capacity
= 0.

21

• Family Maximum Cumulative Delivery: For each product family, there may be
an upper limit on the cumulative number of member systems that are ever delivered
from the family. These limits must be respected. All produced LRIP and coasting
systems count towards this capacity. Default capacity = unlimited.

• Minimum Sustaining Rate: Given that systems are delivered from a product family
in a particular time period, there may be a lower bound on the number of systems that
must be delivered from that family in that time period. These bounds must be met,
although LRIP does not count towards this bound. Also, these bounds are not enforced
during the last production period, allowing the production line to wind down. Default
MSR = 0.

• Delivery Gaps: Product families may be restricted so that delivery begins at most
1 time; it cannot start delivering systems, stop, and then subsequently restart. This
means that all systems within that family must be delivered during a collection of
contiguous time periods.

• Production Smoothing: For each product family, there may be a limit on the
variation in number of system delivered from that family when in full-rate production.
This prevents undesirable effects to the manufacturer. Note that in the final period
of full-rate production, this restriction is less stringent so that the production line can
begin to wind down output. Default production variation = unlimited.

• Production Ramp-Up: For each product family, there may be a ramp-up period
prior to full-rate production. During this ramp-up, delivery output is not required
to respect production smoothing. Instead, the number of systems delivered must be
non-decreasing in time during this ramp-up.

• Upfront RDT&E Costs: For each product family, there may be an upfront RDT&E
cost such that systems from the family can be delivered if and only if the RDT&E cost
profile of the family is incurred. Default cost = $0. The analyst may choose to allow the
optimization engine to delay certain upfront RDT&E costs in order to avoid budgetary
bottlenecks. For each time period that a cost profile is delayed, a separate cost profile
must be supplied; a delay (including d = 0) is valid only if it has an associated cost
profile. Incurring a delay of d time periods also delays the availability of systems in the
product family by d time periods. In addition, if d > 0, then at least one system within
that family must also be delayed by exactly d (other systems may be delayed by more).
The analyst may choose to enable legacy RDT&E cost behavior. As before, systems
from the product family with an upfront RDT&E cost profile may only be produced
if and only if the cost profile is incurred. However, the d = 0 cost profile is incurred
regardless of when the associated systems are first delivered. An upfront RDT&E cost
profile cannot be incurred if any of the costs extend into future time periods.

• Product Family Obviation: All systems within a product family may be obviated
by any system within another product family so that any system from the obviated
product family can only be delivered prior to any deliveries of systems from the obvi-
ating product family.

22

• Product Family Ratios: For each product family, there may be a ratio defined for
each component in which delivery of systems from the product family to each com-
ponent must be within a set variance of the defined ratios. The delivery ratio must
be within a specified time period window. Once a product family starts delivering
systems to one component, it must also begin delivering systems to all other compo-
nents according to the ratio. Once deliveries are complete to one component, the ratio
for that component is no longer enforced, but ratios defined between the remaining
components must be enforced. After deliveries to a component from a product family
with ratios stops, the product family may not restart deliveries to that component in
a later time period.

Low-Rate Initial Production

• LRIP Profiles: Some systems in some product families may require a modest number
of systems be produced in the years leading up to full-rate production for the family.
These LRIP profiles define fixed amounts of systems that must be produced and de-
livered up to 5 years before FRP begins. The optimization chooses how to partition
the delivered LRIP systems to components in storage. These LRIP profiles have 3
additional analyst-defined properties: 1) not all of the LRIP systems produced have to
be delivered to storage (some may be destroyed, for instance), 2) the seed system for
the LRIP production may or may not be explicitly defined and, 3) if the seed system is
defined, these seeds may or may not be extracted from storage when the LRIP profile
is produced.

• LRIP Timing: All LRIP profiles incurred by a product family must be lined up so
that their final LRIP delivery come exactly one time period prior to the first non-LRIP
(i.e., FRP) delivery for the family.

Coasting Systems

• Coasting System Fielding: Some systems, designated by the user, are allowed to
continue delivery to missions in any component in the extended time horizon based
on their delivery rates in the last conventional time period. These systems are not
considered future systems and have more flexibly as their delivery rates are selected
by the optimization. If the optimization chooses to coast a system in a mission in a
component, then it coasts that system until the mission has no more groups in which
to upgrade to the coasting system. Once delivery of coasting system to a mission in a
component ceases, then it cannot be restarted in a later time period. Coasting systems
are purchased or upgraded based on how they were acquired in the last conventional
time period. By convention, a mission will never be supported by both future systems
and systems that are allowed to coast.

23

Future Programs

• Future Program Activation: Systems that might enter the fleet far in the future
can be grouped together into future programs. Future programs are incorporated into
the fleet via simple go/no-go decisions. If a future program is activated, then at least
one future system associated with the program must be activated. Optionally, each
future program may be restricted so that its activation requires that all of its associated
systems must be fielded.

• Future System Fielding: When a future system is activated in a component, it
must be fielded to its mission in that component according to a fixed, user-defined
fielding schedule. Optionally, each future system may be mandated to be fielded in
every component. If mandated future systems do not field then the schedule phase
indicates infeasibilities.

• Future Obviates Present: Once a future system starts fielding to a mission in a
particular component, no other “non-future” systems may be fielded to that mission
in that same component.

24

Chapter 2

Formulation Indices, Sets and Tuples

Formulation Indices

The following indices are used consistently throughout the formulation for indexing input
parameters and decision variables:

• i and j denote system types.

• m denotes missions, which are predefined assignments performed by specific systems
with specific performance qualities.

• t denotes time periods (years) in the planning horizon. Note that time periods are
partitioned into the conventional and extended time horizons. The extended time
horizon allows for the inclusions of future programs.

• T denotes the ending period of the conventional planning horizon.

• T denotes the ending period of the extended planning horizon, which spans T < t ≤ T .
Note, if there does not exist an extended time horizon in the model then T = T .

• c denotes components.

• p and q denote product families. Each product family is associated with a start-up
cost profile, a per-period procurement cost, a per-period RDT&E cost, a set of upfront
RDT&E cost profiles, and a subset of system types. The start-up cost profile and an
upfront RDT&E profile must be incurred in order to begin producing systems from
the family; the per-period costs must be incurred for every time period that the family
is active.

• d denotes the possible number of time periods by which upfront RDT&E costs associ-
ated with a product family (and thus the availability of the associated systems) may
be delayed. A value of d = 0 indicates that the product family starts “on time” while
a value of d = 2 indicates that the product family starts two years late. Delays of
d ∈ {0, . . . , T − 1} are only valid if there is an associated cost profile explicitly input
for that delay.

25

• s denotes the synchronization sets. Each sync set is associated with a collection of
missions (given by the set SyncSetMissionss) and systems (given by SyncSetSyss)
for which the number of groups of synchronized systems entering or exiting the syn-
chronized missions must be equal for all time periods.

• F denotes the future programs. Each future program has associated costs (predefined
startup and active profiles) along with associated future systems having fixed fielding
profiles. Future programs are included in the fleet via simple go/no-go decisions.

• J denotes the future systems. These systems are fielded according to a fixed profile,
and can only be fielded if their parent future program has been activated.

Useful Sets and Tuples

Fleet Structure and Flow

• SysMissions defines the valid pairings (i,m) where system i can serve mission m.

• Roles defines the valid triples (i,m, c) where system i can serve missionm in component
c.

• InterimRoles defines the roles (i,m, c) where system i can serve mission m in compo-
nent c where i is an interim system (i.e., neither initial nor final) in mission m in compo-
nent c. Here InterimRoles ⊆ Roles and is used to filter the bInterimGpCanFieldi,m,c,t
variables down to the minimal number needed.

• MandatedRoles defines the roles (i,m, c) for which there exists a requirement that
at least a certain number (given by FinalMandatei,m,c) of systems i must exist in
mission m in component c at the end of the conventional time horizon (time T). Here
MandatedRoles ⊆ Roles and is used to filter the iF inalMandateDeficiti,m,c variables
down to the minimum number needed.

• Transitions defines the valid quadruples (i, j,m, c) where system i can modernize by
some means to system j in mission m in component c.

• MissionUpg defines the valid quadruples (i, j,m, c) where system i can upgrade to
system j in mission m in component c. Here, the seed system i is consumed in the
creation of system j. Note that MissionUpg ⊆ Transitions.

• StorageUpg defines the valid pairs (i, j) where system i can upgrade to system j in
storage for any component. As in MissionUpg, the seed system i is consumed in
the creation of j. Unlike MissionUpg, these upgrades happen in storage, not in the
context of a mission, and so can define pairs (i, j) not seen in the set Transitions.

• Inflowi,m,c defines the set of valid systems j for which (j, i,m, c) ∈ Transitions. These
are the systems that can modernize to system i in mission m in component c.

26

• Outflowi,m,c defines the set of valid systems j for which (i, j,m, c) ∈ Transitions.
These are the systems that can be modernized from system i in mission m in component
c.

• PurchasableSys defines the set of systems i that are able to be purchased. This is used
to filter the iNumBatchesPurchi,c,t variables down to the minimal number needed.

• DeliverableSys defines the set of systems i that are able to be delivered (i.e., finished
production). This is used to filter the bSysDeliveredi,t variables down to the minimal
number needed.

• FreeInterimUpgSys defines the set of systems i that are 1) able to be upgraded to
with zero cost and then 2) upgraded to something else. This is used to define the
“hull” systems in storage.

• SysWithLripOrInitialStorage defines the set of systems i that have either LRIP that
is delivered to storage or initial storage inventory. This is used to define those systems
that require more careful consideration when implementing the “Fielding New Systems
from Storage” business rule.

Optimization Tiers

These tuples are used to pass optimal solutions from higher priority tiers on to the next
tier.

• fixedSysInMissionUpg defines the valid (i, j,m, c, t, N) sextuples where N systems
will be upgraded from system i to j in mission m in component c at time t ≤ T as
determined by preceding tier optimizations. This set will be empty during the first
tier.

• fixedSysFromStorage defines the valid (i, j,m, c, t, N) sextuples where N systems
undergo a storage swap wherein system i leaves mission m in component c and goes
to storage while j leaves storage and enters mission m in component c at time t ≤ T
as determined by preceding tier optimizations. This set will be empty during the first
tier.

• fixedGpReplaced defines the valid (i,J ,m, c, t, N) sextuples where N groups will be
upgraded from system i to J in mission m in component c at time t ≤ T as determined
by preceding tier optimizations. This set will be empty during the first tier.

• fixedModernizedDeficit defines the valid (i,m, t,N) quadruples where system i in
mission m has a modernization deficit of N systems at time t ≤ T as determined by
preceding tier optimizations. This set will be empty during the first tier.

• fixedF inalMandateDeficit defines the valid (i,m, c,N) quadruples where system i
in mission m in component c has a final deficit of N systems at time T as determined
by preceding tier optimizations. This set will be empty during the first tier.

27

• fixedF inalFutureMandateDeficit defines the valid (J , c, N) triplets where system
J in component c has a final deficit of N groups at time T as determined by preceding
tier optimizations. This set will be empty during the first tier.

• fixedCoastingLevel defines the valid (i,m, c,N) quadruples where system i in mission
m in component c is coasting at a level of N groups per year in future time periods
as determined by preceding tier optimizations. This set will be empty during the first
tier.

• fixedGpCoastingPurch defines the valid (i, j,m, c, t, N) sextuples where N groups
of system j are purchased to replace system i in mission m in component c in time
T < t ≤ T as determined by preceding tier optimizations. This set will be empty
during the first tier.

• fixedGpCoastingUpg defines the valid (i, j,m, c, t, N) sextuples where N groups of
system i are upgraded to system j in mission m in component c in time T < t ≤ T
as determined by preceding tier optimizations. This set will be empty during the first
tier.

Modernization Scheduling

• ComponentMissionSuccessions defines the valid component-mission pairings
(c1,m1, c2,m2) where mission m1 in component c1 must completely modernize and
finish fielding before m2 in component c2 can begin fielding (m1 in c1 is said to precede
m2 in c2).

• SuccessorComponentMissions defines the set of component-mission pairs (c,m)
which are preceded by some other component-mission pair as defined in the
ComponentMissionSuccessions set.

• SysObviations defines the valid system pairings and overlaps (i, j, o) where system j
can only be produced before system i is produced (i obviates j). If an overlap o is
specified, both systems can be produced for an overlap of o time periods, starting in
the first time period in which system i is produced.

• SyncSetComponentss defines the component of the synchronization set s.

• SyncSetMissionss defines the set of missions belonging to the synchronization set s.

• SyncSetSyss defines the set of systems belonging to the synchronization set s.

• UpgDensityF lags defines the triplets (i,m, `) where system i must transition into
mission m across all components so as to either achieve one of up to 3 density lev-
els ` ∈ UpgDensityLevelsm or exceed the highest density level. It helps filter the
bTransitionedToDensityLeveli,m,` variables down to the minimal set needed.

28

• FinalDensityF lags defines the triplets (i,m, `) where system i in mission m across all
components must either achieve one of up to 3 density levels ` ∈ FinalDensityLevelsm
or exceed the highest density level during the final time period. It helps filter the
bHasFinalDensityi,m,` variables down to the minimal set needed.

• StorageUpgUsePriorities defines the valid parings (i, j) where if system i is exchange-
able in storage, then j cannot be spoken for as the seed of a storage upgrade.

• StorageUpgBeforePurch defines the set of systems i that must be used up as storage
upgrade seeds before any corresponding new purchases can occur. That is, for all
systems j such that (i, j) is a storage upgrade, no systems j may be purchased while
i is available in storage.

Product Families

• ProductFamilyp defines the set of system types belonging to the product family p.

• SysPfMembershipi defines the set of product families to which system i belongs.

• PfWithAnyActive defines product families p for which a per-period procurement ac-
tive cost and/or a per-period RDT&E active cost exists. This filters the bPfActivep,t
variables down to the minimal number needed.

• PfWithProcureActive defines product families p for which a per-period procurement
active cost exists.

• PfWithRdteActive defines product families p for which a per-period RDT&E active
cost exists.

• PfWithRdte defines product families p with upfront RDT&E cost profile(s) and/or a
per-period RDT&E active cost.

• PfWithRdteDelays defines product families p for which at least one upfront RDT&E
cost profile exists. This filters the bRdteDelayp,d variables down to the minimial num-
ber needed.

• AllowedRdteDelaysp defines the delays d for which a product family upfront RDT&E
cost profile exists. These are the valid time periods by which the effort may be delayed,
given that delays are allowed.

• PfWithStartup defines product families p for which a start-up cost profile exists. This
filters the bPfStartupp,t variables down to the minimal number needed.

• PfWithProdCtrls defines product families p for which there exist certain controls on
the production of member systems. These controls include a minimum production rate,
a minimum horizon production limit, a maximum horizon production limit, a delivery
variance limit for production smoothing, or the restriction that production gaps are

29

not allowed. This filters the bPfDeliveredp,t variables down to the minimal number
needed.

• PfWithRatios defines the product families p for which fielding ratios exist
between the components. This filters the variables bPfF irstY earF ieldingp,t and the
bPfLastY earF ieldingp,c,t down to the minimal number needed.

• PfWithEarmarkst defines the set of product families p in time period t with a non-
zero earmark budget.

• SysInPfWithEarmarkst defines the set of systems that are in product families with
non-zero earmark budgets in time t.

• PfWithLrip defines product families p which has an LRIP profile. This filters the
bPfFrpStartedp,t variables down to the minimal number needed.

• LripProfiles defines the valid pairs (p, i) where system i of product family p has an
LRIP profile.

• LripY ears denotes the set of integers {1, 2, . . . ,maxLripY ear}, where maxLripY ear
gives the maximum number of years prior to full-rate production, across all LRIP
profiles, that LRIP systems are produced.

• PfObviations defines the valid product family pairings (p, q) where any system from
product family q can only be produced before any systems are produced from product
family p (p obviates q).

Coasting Systems

• CoastableSys defines the set of systems i that can continue delivery at a constant
rate after the last conventional time period. Coasting systems continue to be delivered
at the same rate as their delivery rate in the last conventional time frame. Coasting
systems should not be confused with future systems.

• CoastableRoles defines the valid (i,m, c) triples where system i in mission m in com-
ponent c is allowed to coast in future time periods.

• CoastablePurchTransitions defines the valid (i, j,m, c) quadruples where system j is
purchased to replace system i in mission m in component c.

• CoastableUpgTransitions defines the valid (i, j,m, c) quadruples where system i is in
mission upgraded to system j in mission m in component c.

30

Future Programs

• FutureProgramF defines the set of future system types belonging to program F .

• FutureTransitions defines the valid quadruples (i,J ,m, c) where system i can be
replaced by future system J in mission m in component c.

• FutureTransitionPurch is a subset of FutureTransitions and defines the valid tran-
sition (i,J ,m, c) where system i can be replaced by future system J in mission m in
component c and system i returns to storage.

• FutureMissionMapJ defines the mission to which future system J is fielded.

• MandatedFutureSys defines the set of future system types J that must field.

• FutureUpgDensityF lags defines triplets (J ,m, `) where system J must transition
into mission m to either achieve one of up to 3 density levels ` ∈ UpgDensityLevelsm or
exceed the highest density level - filtering bFutureTransitionedToDensityLevelJ ,m,`
down to the minimal set needed.

• FutureF inalDensityF lags defines the triplets (J ,m, `) where future system J in
mission m must either achieve one of up to 3 density levels ` ∈ FinalDensityLevelsm
or exceed the highest density level during the final time period. This filters the
bFutureHasFinalDensityJ ,m,` variables down to the minimal set needed.

31

This page intentionally left blank.

Chapter 3

Model Input Parameters

The parameters below capture the specific qualities of the business rules as they relate
to a broad range of performance, fielding, and budgetary requirements.

Optimization Tiers and Phases

• αi,m gives the performance of system type i in mission m. This is the key parameter
driving the performance optimization phase, which seeks to maximize the sum of per-
formance for all system types for all missions in all components over the entire planning
horizon.

• CurrentT ier gives the tier number for the missions that are currently being mod-
ernized. Missions with a smaller tier number have already be modernized and their
schedule is fixed. Missions with a larger tier number have not yet been modernized,
and their schedule (of no modernizations) is also fixed.

• MissionT ierm gives the priority tier for mission m. All missions with the smallest
tier number are modernized together first, then missions with the next smallest tier
number are modernized with the budget left over from the first tier. This continues in
the same manner until all tiers are modernized.

• SchedulePhase, AgePhase, Y earlyBudgetPhase, HorizonBudgetPhase,
PerformancePhase, and CostPhase are binary parameters indicating which of the
six phases the optimization is currently performing. They are used in the objective
function to ensure that the proper terms are being minimized or maximized.

• TierScheduleDeficitBound gives the upper limit on the schedule violation amount
allowed during phases subsequent to the schedule phase within a tier. This limit
equals the minimum schedule violation discovered during the schedule phase.

• TierAgeOveragesBound gives the upper limit of the economic useful life or age vio-
lation amount allowed during phases subsequent to the age phase within a tier. This
limit equals the minimum system-year age violations discovered during the age phase.

• Y earlyBudgetOverrunBound gives the upper limit on the yearly budget overage
amount allowed during phases subsequent to the yearly budget phase. This limit

33

equals the minimum yearly budget overrun amount discovered in the yearly budget
phase.

• HorizonBudgetOverrunBound gives the upper limit on the horizon budget overage
amount allowed during phases subsequent to the horizon budget phase. This limit
equals the minimum horizon budget overrun amount discovered in the horizon budget
phase.

• MinimumPerformance gives the smallest acceptable value for total fleet performance
during phases subsequent to the performance phase. This lower bound equals the
maximum cumulative fleet performance found during the performance phase.

• MaximumCost gives the largest acceptable value for all combined costs included in
the cost phase expenses during phases subsequent to the cost phase. This upper bound
equals the minimum combined fleet cost for only costs included in the cost phase found
during the cost phase.

• ScheduleV iolationLimit is an optional hard limit (upper bound) that the user can
place on the total number of schedule violations. This limit must be obeyed in all
optimization phases.

• AgeV iolationLimit is an optional hard limit (upper bound) that the user can place
on the total number of economic useful life violations. This limit must be obeyed in
all optimization phases.

• Y earlyBudgetOverrunLimit is an optional hard limit (upper bound) that the user
can place on the yearly budget overages. This limit must be obeyed in all optimization
phases.

• TotalBudgetOverrunLimit is an optional hard limit (upper bound) that the user can
place on the horizon budget overruns. This limit must be obeyed in all optimization
phases.

• PerformanceLimit is an optional hard limit (lower bound) that the user can place
on the cumulative fleet performance. This limit must be obeyed in all optimization
phases.

• ScheduleV iolationLimit is an optional hard limit (upper bound) that the user can
place on the value for all combined costs included in the cost phase expenses. This
limit must be obeyed in all optimization phases.

Fleet Structure and Flow

• PurchBatchSizei gives the smallest number of systems i that can be purchased. Fur-
thermore, all purchases must be made in multiples of this batch size. For example, if
PurchBatchSizei = 5, then the number of i that can be purchased at any time is 0,
5, 10, 15, 20, etc.

34

• allowPrePurchasing is a binary flag that is set to 1 if pre-purchasing is allowed and 0
if it is not. When pre-purchasing is allowed, systems purchased or upgraded in storage
are not required to be fielded into a mission as soon as their production is complete.
When pre-purchasing is disallowed, these purchased and in storage-upgraded systems
must be immediately fielded to a mission.

• PurchDelayi gives the number of time periods between when costs are incurred and
when the system i is actually delivered. PurchDelayi is itself the sum of two separate
delay parameters PurchAdminDelayi followed by PurchProdDelayi.

• UpgDelayi,j gives the number of time periods between when costs are incurred for
upgrading system i to j and when the resultant j is actually delivered. This param-
eter applies to both in mission and in storage upgrades. UpgDelayi,j is the sum of
parameters UpgAdminDelayi,j followed by UpgProdDelayi,j.

• LripDelayp,i gives the production delay when obtaining LRIP systems i for family
p. Depending on whether the LRIP systems are purchased or upgraded from a seed,
LripDelayp,i is equal to PurchProdDelayi or UpgProdDelayj,i, respectively, where j
is the seed system.

• SysPerComponentMissionc,m gives the total number of systems needed for mission
m in component c. Note that this value must equal the total number of systems in the
initial inventory for mission m in component c.

• GpPerComponentMissionc,m gives the total number of groups needed for mission m
in component c.

• SysPerGpm gives the number of systems per group for mission m. This is used to
ensure that systems are upgraded in group-sized increments.

• maxMissionRequirementi gives the maximum number of systems per group across
all missions that system i supports.

• InitialSysInMissioni,m,c gives the initial number of systems i in mission m in compo-
nent c. This parameter describes the complete existing fleet prior to any modernization.
Note that the total initial inventory for each mission must match the number of systems
required for that mission given by the SysPerComponentMissionc,m parameter.

• InitialGpInMissioni,m,c gives the initial number of groups of system i in mission m
in component c. This is the same information as given in InitialSysInMission, just
denominated in group size.

• InitialSysInStoragei gives the initial number of systems i in storage at the beginning
of the planning horizon.

• maxPathLengthm gives the maximum possible path length in the transition diagram
of mission m.

35

• InitialRoleAgei,m,c gives the initial age of the systems i in mission m in component
c. This parameter describes the average age of all the initial systems in mission for all
components at the beginning of the time horizon.

• maxTimeAllowedInStorage is the maximum number of time periods a newly pur-
chased or in storage upgraded system is allowed to stay in storage before being fielded
to a mission in a component. This time limit counts the year the system was delivered
to storage because this is the first year it could be fielded.

Modernization Scheduling

• ModernPercenti,m,t gives the minimum percentage of system i in mission m across
all components that must be modernized to something else by time t ≤ T . Note that
system i must be in the initial inventory for m for at least one component.

• FinalMandatei,m,c gives the minimum number of systems i in mission m in component
c that must be in service at the end of the conventional time horizon (T). This is often
used when administrative requirements force certain programs to be mandatory.

• GpTransitionLimitPerT imem gives the maximum number of groups that can be tran-
sitioned in mission m during a single time period. This is used since groups are not
available for modernization all at once due, for example, to deployment based on the
ARFORGEN cycle.

• GpTransitionLimitTotalm gives the maximum number of groups for mission m that
can be transitioned throughout the conventional planning horizon.

• UpgDensityLevelsm defines the transition density levels for mission m. There may be
anywhere between 0 and 3 levels defined. As an example, if UpgDensityLevelsm =
{10, 13, 20}, then the number of groups transitioned into m of a specific system type
must be either 10, 13, 20, or greater than 20.

• FinalDensityLevelsm defines the density levels for mission m at the end of the con-
ventional planning horizon. There may be anywhere between 0 and 3 levels defined.
Consider the case where FinalDensityLevelsm = {10, 13, 20}. Then the number of
groups in m during time T of a specific system type must be either 10, 13, or at least
20.

• PfMsrp gives the lower limit on the number of systems from product family p that
must be delivered at any time period, given that systems from the family are delivered.

• PfDeliveryMinp,t defines the lower limit on the number of systems from product
family p that must be delivered in time period t.

• PfDeliveryMaxp,t gives the upper limit on the number of systems from product family
p that can be delivered at time t ≤ T .

36

• PfTotalDeliveryMinp gives the lower limit on the cumulative number of systems
from product family p that must be delivered if any production in the product family
p occurs.

• PfTotalDeliveryMaxp gives the upper limit on the cumulative number of systems
from product family p that can ever be delivered.

• PfComponentRatiosp,c defines the ratio on the number of systems delivered from
product family p to component c over the PfRatioWindowp number of time periods.

• PfRatioWindowp gives the number of time periods for product family p in which the
delivery for each component must be within the specified ratio variance.

• PfRatioV ariancep gives the maximize allowable deviation above or below the de-
sired number of systems delivered to components based on the ratios for product fam-
ily p. For example, if PfComponentRatiosp,1 = 2, PfComponentRatiosp,2 = 3,
PfRatioWindowp = 1, and PfRatioV ariancep = 0.1, then if product family p
delivers 100 systems to component 1 in time period 5, then it must also deliver
3
2
∗ 100± 0.1 ∗ 3

2
∗ 100 to component 2 in time period 5.

• PfAllowGapsp is a binary flag that takes on value 1 to indicate that delivery gaps for
family p are allowed.

• MaxDeliveryV ariancep gives the bandwidth within which the product family p must
stay after it reaches full-rate production (that is, after LRIP and/or ramp-up periods).
For example, if fMedianDeliveryLevelp = 100 and MaxDeliveryV ariancep = 0.2,
then the highest number of systems delivered from family p in a time period can only
be 1.1 ∗ 100 and the lowest number of systems delivered can only be 0.9 ∗ 100.

• RampUpp gives the number of time-periods prior to full-rate production that the
family p is ramping-up the production line. These periods do not count towards
to MaxDeliveryV ariancep bandwidth. The only restriction is that each successive
ramp-up period must produce at least as many systems as the previous.

• LripPreProductionp,i,t gives the number of systems i of product family p that are
produced t years before full-rate production.

• LripPreDeliveryp,i,t gives the number of systems i of product family p that are pro-
duced t years before full-rate production and are then delivered to storage.

• LripSeedSysp,i gives the seed system (if any) that is used in producing LRIP systems i
for product family p. This helps determine what LRIP production costs and delays are
incurred: if no seed is given then the purchase cost/delays for system i are used, if the
seed (say system j) is given then the corresponding upgrade from j to i costs/delays
are used.

• LripConsumesSeedsp,i is a binary flag indicating whether the seed system (given by
LripSeedSysp,i) is removed from storage in producing LRIP systems i in product
family p.

37

• SysUsefulLifei gives the economic useful life of system i in the fleet. Once a system
in the fleet reaches this age it must be retired from the fleet.

Cost & Budgets

• PfStartupCostSchedulep,t gives the start-up cost schedule for product family p during
its tth time period of activity. Note the t = 0 represents the time when an FRP system
in the family first becomes active, t = 1 represents the year after an FRP system in
the family first becomes active, and t = −1 represents the year before an FRP system
in the family first becomes active. All are valid time periods to incur start-up costs.

• PfProcureActiveCostp gives the recurring procurement cost of keeping product family
p active for one time period.

• PfRdteActiveCostp gives the recurring RDT&E cost of keeping product family p active
for one time period.

• PrePurchCosti + PurchCosti gives the cost of purchasing 1 system of type i. Here,
PurchCosti gives the amount charged in the time period work first begins to de-
liver the system (usually the admin period). If a purchase requires long lead, then
PrePurchCosti gives the amount charged one period prior to PurchCosti; otherwise
PrePurchCosti = 0.

• PreUpgCosti,j+UpgCosti,j gives the cost of upgrading (either in mission or in storage)
1 system from type i to type j. UpgCosti,j gives the amount charged in the time
period work first begins to deliver the system. If an upgrade requires long lead, then
PreUpgCosti,j gives the amount charged one period prior to UpgCosti,j; otherwise
PreUpgCosti,j = 0.

• LripPreCostp,i +LripCostp,i denotes the cost of procuring 1 LRIP system of type i in
product family p. Here, LripCostp,i gives the amount charged in the time period work
first begins to deliver the LRIP system (usually the admin period). If a procurement
requires long lead, then LripPreCostp,i gives the amount charged one period prior to
LripCostp,i; otherwise LripPreCostp,i = 0.

• SysOSCosti,m gives the cost for operating and supporting system i in mission m in
any component for one time period.

• RdteCostProfilesp,d,t gives the upfront RDT&E cost for product family p at time
t ≤ T when it is delayed by d time periods. This entire cost profile must be incurred
in order for any systems in product family p to be fielded.

• HasRdteInFutureT imePeriodp,d indicates whether or not the upfront RDT&E cost
profile associated with product family p and a delay of d time periods includes any
costs that are incurred in a future time period.

38

• ProcureBudgett gives the per-period budget at time t ≤ T for procurement of sys-
tems. Procurement expenses include system purchase and upgrade costs (both LRIP
and FRP), as well as product family start-up and procurement active costs. When
procurement expenses for future programs are incurred during the conventional time
horizon, those expenses must also respect this budget.

• OSBudgett gives the per-period budget at time t ≤ T for O&S expenditures for systems
in the fleet. Systems in storage do not incur O&S expenses. When O&S expenses for
future programs are incurred during the conventional time horizon, those expenses
must also respect this budget.

• RdteBudgett gives the per-period budget at time t ≤ T for expenditures on RDT&E
efforts. This includes both upfront RDT&E costs and RDT&E active costs. When
RDT&E expenses for future programs are incurred during the conventional time hori-
zon, those expenses must also respect this budget.

• CombinedBudgett gives the budget at time t for a user-specified combination of pro-
curement, O&S, and RDT&E expenditures. For example, the user may constrain all
three categories under this budget; or perhaps only procurement and RDT&E expen-
ditures are desired to be constrained together. When expenses for future programs are
incurred during the conventional time horizon, those expenses must also respect this
budget.

• ComponentEarmarkc,t gives a specified allotment of money at time t ≤ T reserved
for only purchases and upgrades of systems in component c. Once this allotment of
money is exhausted in time period t, component c may use money available in either the
ProcureBudgett or the CombinedBudgett (if CombinedBudgett includes procurement
expenses). No component may spend, in any way, the earmarks for another component.

• PfEarmarkp,t gives a specified allotment of money at time t ≤ T reserved for only
purchases and upgrades of systems assigned to product family p or for the active
costs, startup costs, RDT&E, or LRIP associated with product family p. Once this
allotment of money is exhausted in time period t, product family p may use money
available in either the ProcureBudgett, RdteBudgett, or the CombinedBudgett (if
CombinedBudgett includes procurement and/or RDT&E expenses). No product fam-
ily may spend, in any way, the earmarks for another product family.

• TotalProcureBudget gives the cumulative budget for all procurement expenses ever
incurred, both over the conventional and extended planning horizons.

• TotalOSBudget gives the cumulative budget for O&S expenses ever incurred, both
over the conventional and extended planning horizons.

• TotalRdteBudget gives the cumulative budget for RDT&E expenses ever incurred,
both over the conventional and extended planning horizons.

• TotalCombinedBudget gives the cumulative budget for all (user-specified) combined
expenses ever incurred, both over the conventional and extended planning horizons.

39

Future Programs

• FutureSysF ieldingProfileJ ,c,t gives the number of groups of future systems of type
J in component c that must be fielded at time t ≤ T , if the future system is activated.

• FutureSysF irstY earF ieldingJ gives the time period during which future
system J first fields to any component, according to the schedule dictated by
FutureSysF ieldingProfileJ ,c,t.

• FutureProcureBudgett, FutureOSBudgett, FutureRdteBudgett, and
FutureCombinedBudgett give the procurement, O&S, RDT&E, and Combined bud-
gets, respectively, for time periods in the extended time horizon (i.e., T < t ≤ T).

• FutureProgramRdteCostScheduleF ,t, FutureProgramStartupCostScheduleF ,t, and
FutureProgramActiveCostScheduleF ,t give the cost of future program F (if acti-
vated) at time t in the categories of RDT&E, startup, and procurement active cost,
respectively.

• FutureTransitionCosti,J ,m,c gives the cost of transitioning 1 system from type i to
future system type J in mission m in component c.

• FutureSysOSCostJ gives the cost of operating and supporting future system J for
one time period.

• FutureTransitionLongLeadi,J ,m,c gives the fraction of the transition cost from system
i to future system J in mission m in component c that is incurred a year earlier than
normal.

• FutureTransitionDelayi,J ,m,c gives the number of time periods between when tran-
sition costs are incurred and when the system i is replaced by J in mission m in
component c.

• FutureSysLripProfileF ,c,t gives the number of LRIP systems that program F pro-
duces in component c in time t.

• FutureSysLripDelayJ = FutureTransitionDelayi,J ,m,c for that quadruple (i,J ,m, c)
having the largest FutureTransitionCosti,J ,m,c.

• FutureSysLripLongLeadJ = FutureTransitionLongLeadi,J ,m,c for that quadruple
(i,J ,m, c) having the largest FutureTransitionCosti,J ,m,c.

• FutureSysLripCostJ = FutureTransitionCosti,J ,m,c for that quadruple (i,J ,m, c)
having the largest FutureTransitionCosti,J ,m,c.

Auxiliary Parameters

These parameters are not input by the user, but are instead calculated from the value of
other user-entered parameters.

40

• FirstAvailablei gives the time period at which system type i first becomes available
for delivery. If the system is never available, then the parameter has value T + 1.

• maxGpTransitionLimit gives maxmGpTransitionLimitPerT imem.

• TotalSysPopulation gives the total number of systems in the fleet.

• NumFutureSys is the total number of types of future systems.

• NumStorageUpg is the total number of supported in storage upgrades.

• NumComponents is the total number of components in the fleet.

41

This page intentionally left blank.

Chapter 4

MILP Decision Variables

The following is a list of all decision variables used in the MILP formulation.
Notice that the integer iModernizedDeficiti,m,t, iF inalMandateDeficiti,m,c,
iFutureSysMandateDeficitJ ,c, iSysY earAgeOveragesi,m,c,t, and iPfDeliveryDeficitsp,t
variables along with the continuous “Budget Overrun” variables are used to diagnose business
rule violations where the optimization plan is unable to meet strict user-specified upgrade
mandates or budgetary limits.

Non-Negative Integer Variables

• iNumGpInMissionUpgi,j,m,c,t denotes the number of groups of system type i which
are upgraded to system type j in mission m in component c at time t. It is defined for
all (i, j,m, c) ∈MissionUpg and for all t ≤ T .

• iNumGpFromStoragei,j,m,c,t denotes the number of groups of system i that are sent
out of mission m in component c to storage in exchange for system j from storage into
mission m at time t. This is defined for all (i, j,m, c) ∈ Transitions and for all t ≤ T .

• iNumBatchesPurchi,c,t denotes the number of batches (whose size is given by
PurchBatchSizei) of system i purchased for component c at time t. These purchased
systems enter storage and may immediately be sent out to a mission. This is defined
for all i ∈ PurchasableSys, for all c, and for all t ≤ T .

• iNumInStorageUpgi,j,c,t denotes the number of systems of type i upgraded in storage
to type j for component c at time t. This is defined for all (i, j) ∈ StorageUpg, for all
c, and for all t ≤ T .

• iModernizedDeficiti,m,t denotes how far system i in mission m is below the system
modernization requirement (given by ModernPercenti,m,t) at time t. Any positive
value indicates a business rule violation. This variable is defined for all (i,m) ∈
SysMissions and for all t ≤ T .

• iF inalMandateDeficiti,m,c denotes how far system i in mission m in component c is
below the end-of-conventional-horizon system mandate (given by FinalMandatei,m,c).
This variable is denominated by group size (so if a mission is 17 systems below mandate
and the group size is 10, then this variable reports 2 groups under mandate). Note that

43

the output reports the correct deficit in number of systems. Any positive value indicates
a business rule violation. This variable is defined for all (i,m, c) ∈MandatedRoles.

• iNumGpReplacedi,J ,m,c,t denotes how many groups of system i are replaced by future
system J in mission m in component c at time t. This variable is defined for all
(i,J ,m, c) ∈ FutureTransitions and for all t ≤ T .

• iFutureSysMandateDeficitJ ,c denotes how many groups of future system J in com-
ponent c are not fielded in the conventional or extended time horizons.

• iSysY earAgeOveragesi,m,c,t denotes how many system-years of system i in mission
m in component c is over its economic useful life. This variable is defined for all
(i,m, c) ∈ Roles and for all t ≤ T .

• iPfDeliveryDeficitp,t denotes how many systems below the minimum delivery re-
quirement (given by PfDeliveryMinp,t) for product family p at time t. This variable
is defined for all p and for all t ≤ T .

• iCoastingLeveli,m,c denotes how many groups of system i in mission m in component
c will continue to be delivered in each year after the end of the conventional time
horizon until mission m in component c only contains systems of type i. This variable
is defined for all (i,m, c) ∈ Roles.

• iNumGpCoastingPurchi,j,m,c,t denotes how many groups of system type j are pur-
chased to replaced system type j in mission m in component c at time t. This is
defined for all (i, j,m, c) ∈ CoastablePurchTransitions and for all T < t ≤ T .

• iNumGpCoastingUpgi,j,m,c,t denotes how many groups of system type i are in mission
upgraded to system type j in mission m in component c at time t. This is defined for
all (i, j,m, c) ∈ CoastableUpgTransitions and for all T < t ≤ T .

• iInitialInStoragei,c denotes the number of systems of type i that are assigned to
component c in the initial storage inventory. This is defined for all i and for all c.

• iLripProducedc,p,i,t denotes the number of systems of type i produced from LRIP for
product family p in component c at time t. This is defined for all c, for all (p, i) ∈
LripProfiles, and for all t ≤ T .

• iLripDeliveredc,p,i,t denotes the number of systems of type i delivered from LRIP for
product family p in component c at time t. This is defined for all c, for all (p, i) ∈
LripProfiles, and for all t ≤ T .

• iLripSeedsConsumedi,c,t denotes the number of systems of type i that are consumed
as seeds for LRIP in component c at time t. This is defined for all i, for all c, and for
all t ≤ T .

44

Binary Variables

• bTransitionedToDensityLeveli,m,` denotes if mission m over all components ever has
system i at one of the three density levels ` ∈ UpgDensityLevelsm. This is defined for
all (i,m, `) ∈ UpgDensityF lags.

• bHasFinalDensityi,m,` denotes whether system i in mission m over all components
during time T achieves one of the three density levels ` ∈ FinalDensityLevelsm. This
is defined for all (i,m, `) ∈ FinalDensityF lags.

• bSysDeliveredComponenti,c,t denotes whether at least 1 non-LRIP system of type i is
delivered (i.e., completes production) to component c at time t. This is defined for all
i ∈ DeliverableSys, for all c, and for all t ≤ T .

• bSysHasDeliveredComponenti,c,t denotes whether at least 1 non-LRIP system of type
i has been delivered (i.e., completed production) to component c at or before time t.
This is defined for all i ∈ DeliverableSys, for all c, and for all t ≤ T .

• bSysDeliveredi,t denotes whether at least 1 non-LRIP system of type i is delivered
(i.e., completes production) at time t. This is defined for all i ∈ DeliverableSys and
for all t ≤ T .

• bSysInStorageExchangeablei,c,t indicates whether there is at least 1 system of type
i in component c that is exchangeable in storage at time t. It is defined for all i ∈
PrecedingSystems and for all t ≤ T .

• bSysBeforePurchInStorageExchangeablei,c,t indicates whether there is at least 1 sys-
tem of type i in component c that is exchangeable in storage at time t. It is defined
for all i ∈ StorageUpgBeforePurch, for all c, and for all t ≤ T .

• bLripSysBaseY earp,i,t denotes whether system i of product family p first delivers non-
LRIP assets (i.e., FRP) at time t. It is defined for all (p, i) ∈ LripProfiles and for all
t.

• bPfActivep,t denotes whether product family p is active at time t. This is needed only
for families having either a procurement or RDT&E per-period active cost. Hence, it
is defined for all p ∈ PfWithAnyActive and for all t ≤ T .

• bPfStartupp,t denotes whether time t ≤ T is the first year that an FRP in product
family p first becomes active.

• bPfEnforceRatiop,c,t denotes whether product family p must enforce its fielding ratio
for component c at time t. This is defined for all p ∈ PfWithRatios, for all c, and for
all t ≤ T .

• bPfF irstY earF ieldingp,t denotes the year t in which product family p first fields from
any component. This is defined for all p ∈ PfWithRatios and for all t ≤ T .

45

• bPfLastY earF ieldingp,c,t denotes the year t in which product family p last fields from
component c. This is defined for all p ∈ PfWithRatios, for all c, and for all t ≤ T .

• bMissionCanFieldm,c,t denotes whether mission m in component c is allowed to field
in time t based on the completion of predecessor component-missions. Since it is only
needed for component-missions that are preceded by some other component-mission,
it is defined for all (c,m) ∈ SuccessorComponentMissions and for all t ≤ T .

• bInterimGpCanFieldi,m,c,t denotes whether intermediate systems i in mission m in
component c are allowed (but not required) to field in time period t. This is defined
for all (i,m, c) ∈ InterimRoles and for all t ≤ T .

• bFutureProrgamF denotes whether future program F is activated.

• bFutureSysJ denotes whether future system J is activated.

• bFutureSysComponentJ ,c denotes whether future system J in component c is acti-
vated.

• bFutureSysDeficitJ ,c denotes that a mandated future system J in component c does
not field.

• bFutureTransitionedToDensityLevelJ ,m,` denotes if mission m over all components
ever has system J at one of the three density levels ` ∈ UpgDensityLevelsm. This is
defined for all (J ,m, `) ∈ FutureUpgDensityF lags.

• bFutureHasFinalDensityJ ,m,` denotes whether future system J in mission m
over all components during time T achieves one of the three density levels ` ∈
FinalDensityLevelsm. This is defined for all (J ,m, `) ∈ FutureF inalDensityF lags.

• bIsCoastingi,m,c,t denotes whether groups of system type i in mission m in component
c are being delivered in time period t as coasting systems. This is defined for all
(i,m, c) ∈ CoastableRoles and for all T < t ≤ T .

Continuous “Binary” Variables

These variables are continuous in the range [0, 1], but are explicitly restricted to binary
values by the nature of their associated constraints.

• bSysEverDeliveredi denotes whether at least 1 system of type i is ever delivered. This
is defined for all i ∈ DeliverableSys.

• bPfDeliveredp,t denotes whether any system from family p has been delivered at time
t ≤ T .

• bPfEverDeliveredp denotes whether any system from family p has been delivered.

46

• bPfFrpStartedp,t denotes whether production in family p starts delivering FRP assets
at time t ≤ T .

• bRdteDelayp,d denotes whether product family p is delayed by d time periods. If
bRdteDelayp,d = 1, then the associated cost profile RdteCostProfilesp,d,t is used.
If product family p is not used, then bRdteDelayp,d = 0 for all d. Defined for all
p ∈ PfWithRdteDelays.

Non-negative Continuous Variables

The first set of variables is used to represent budget overages in the categories of Pro-
curement, O&S, and RDT&E, as well as a user-specified combination of the three. The first
four variables denote per-period overages in these categories during the conventional time
horizon. The next four denote the per-period overages during the extended time horizon.
The last four denote budget overages for the entire planning horizon (conventional plus ex-
tended horizons). These are used to help diagnose modernization plans whose constraints
cannot be met without going over budget.

• fProcureBudgetOverrunt for all t ≤ T

• fOSBudgetOverrunt for all t ≤ T

• fRdteBudgetOverrunt for all t ≤ T

• fCombinedBudgetOverrunt for all t ≤ T

• fFutureProcureBudgetOverrunt for all T < t ≤ T

• fFutureOSBudgetOverrunt for all T < t ≤ T

• fFutureRdteBudgetOverrunt for all T < t ≤ T

• fFutureCombinedBudgetOverrunt for all T < t ≤ T

• fTotalProcureBudgetOverrun

• fTotalOSBudgetOverrun

• fTotalRdteBudgetOverrun

• fTotalCombinedBudgetOverrun

The following variable is used to represent the median product family production level for
each individual product family and is only used for the Production Smoothing business
rule

• fMedianDeliveryLevelp

47

The following variable is used to represent the amount of component earmark money
spent for purchases and upgrades in component c in time t.

• fComponentEarmarkSpentc,t for all c and for all t ≤ T

The following variable is used to represent the amount of product family earmark money
spent for purchases and upgrades of systems belonging to product family p or the procure-
ment active costs, startup costs, or LRIP costs associated with product family p in time
t.

• fPfEarmarkSpentProductionp,t for all p and for all t ≤ T

The following variable is used to represent the amount of product family earmark money
spent for upfront or active RDT&E for product family p in time t.

• fPfEarmarkSpentRdtep,t for all p and for all t ≤ T

48

Chapter 5

MILP Variable Expressions

The following variable expressions are used to conveniently capture additional information
about the model. These expressions are defined as fixed linear functions of input parameters
and decision variables. They greatly aid readability of the formulation without adding the
computational complexity of new variables. Note that the optimization code contains one
to two dozen additional variable expressions to the ones documented below. However, these
additional expressions serve an auxiliary role (mainly for aiding output of optimization data)
and do not affect the mathematical structure of the formulation itself. For that reason, we
have opted not to include these auxiliary expressions in this document.

Fleet Structure and Flow

• NumSysInMissionUpgi,j,m,c,t denotes the number of systems i transitioned by an in
mission upgrade to system j for mission m in component c at time t. Note that this is
just a redenomination of the variable iNumGpInMissionUpgi,j,m,c,t.

∀(i, j,m, c) ∈MissionUpg, t ≤ T

NumSysInMissionUpgi,j,m,c,t =

iNumGpInMissionUpgi,j,m,c,t ∗ SysPerGpm (5.1)

• NumSysFromStoragei,j,m,c,t denotes the number of systems i that are swapped out
for system j in mission m in component c at time t. Here, i is sent to storage while
j is pulled from storage. Note that this is just a redenomination of the variable
iNumGpFromStoragei,j,m,c,t.

∀(i, j,m, c) ∈ Transitions, t ≤ T

NumSysFromStoragei,j,m,c,t =

iNumGpFromStoragei,j,m,c,t ∗ SysPerGpm (5.2)

• NumGpInMissioni,m,c,t denotes the number of groups of system i performing in mis-

49

sion m in component c at time t.

∀(i,m, c) ∈ Roles, t ≤ T
NumGpInMissioni,m,c,t = InitialGpInMissioni,m,c

+
∑
j,t∗:

j∈Inflowi,m,c

t∗≤min{t,T}

iNumGpFromStoragej,i,m,c,t∗

−
∑
j,t∗:

j∈Outflowi,m,c

t∗≤min{t,T}

iNumGpFromStoragei,j,m,c,t∗

+
∑
j,t∗:

(j,i,m,c)∈MissionUpg
t∗≤min{t,T}

iNumGpInMissionUpgj,i,m,c,t∗

−
∑
j,t∗:

(i,j,m,c)∈MissionUpg
t∗≤min{t,T}

iNumGpInMissionUpgi,j,m,c,t∗

+
∑
j,t∗:

(j,i,m,c)∈CoastablePurchTransitions
T<t∗≤t

iNumGpCoastingPurchj,i,m,c,t∗

−
∑
j,t∗:

(i,j,m,c)∈CoastablePurchTransitions
T<t∗≤t

iNumGpCoastingPurchi,j,m,c,t∗

+
∑
j,t∗:

(j,i,m,c)∈CoastableUpgTransitions
T<t∗≤t

iNumGpCoastingUpgj,i,m,c,t∗

−
∑
j,t∗:

(i,j,m,c)∈CoastableUpgTransitions
T<t∗≤t

iNumGpCoastingUpgi,j,m,c,t∗

−
∑
J ,t∗:

(i,J ,m,c)∈FutureTransitions
t∗≤t

iNumGpReplacedi,J ,m,c,t∗ (5.3)

• NumSysInMissioni,m,c,t denotes the number of systems i performing in mission m in
component c at time t.

∀(i,m, c) ∈ Roles, t ≤ T
NumSysInMissioni,m,c,t = NumGpInMissioni,m,c,t ∗ SysPerGpm (5.4)

• NumSysInMissionExchangeablei,m,c,t denotes the number of systems i in mission
m in component c that are not “spoken for” (i.e., in production for a future mission

50

upgrade) in time t.

∀(i,m, c) ∈ Roles, t ≤ T

NumSysInMissionExchangeablei,m,c,t =

NumSysInMissioni,m,c,t

−
∑

j: (j,i,m,c)∈MissionUpg

NumSysInMissionUpgj,i,m,c,t

−
∑

j∈Inflowi,m,c

NumSysFromStoragej,i,m,c,t

−
∑
j,t∗:

(i,j,m,c)∈MissionUpg
t<t∗≤t+UpgProdDelayi,j

NumSysInMissionUpgi,j,m,c,t∗ (5.5)

• TransitionedToRolei,m denotes whether system i ever fields to mission m. Caution,
if there is neither upgrade density nor final density requirements for mission m, then
this expression will take on value 0 regardless of whether systems i transitioned into
m. This is currently acceptable since this expression is only used in cases where there
exists a final density requirement.

∀(i,m) ∈ SysMissions

TransitionedToRolei,m =
∑

`: (i,m,`)∈UpgDensityF lags

bTransitionedToDensityLeveli,m,`

(5.6)

• NumGpTransiti,j,m,c,t denotes the number of systems i transitioned to system j in
mission m in component c at time t. Recall that “transition” refers to both the mission
upgrades and storage swaps.

∀(i, j,m, c) ∈ Transitions, t ≤ T

NumGpTransiti,j,m,c,t = iNumGpFromStoragei,j,m,c,t

+ iNumGpInMissionUpgi,j,m,c,t (5.7)

• SysF ieldedToRoleSoFari,m,c,t denotes the total number of systems i that are transi-

51

tioned into mission m in component c during time periods up to and including t.

∀(i,m, c) ∈ Roles, t ≤ T
SysF ieldedToRoleSoFari,m,c,t =∑

j,t∗:
j∈Inflowi,m,c

t∗≤min{t,T}

NumSysFromStoragej,i,m,c,t∗

+
∑
j,t∗:

(j,i,m,c)∈MissionUpg
t∗≤min{t,T}

NumSysInMissionUpgj,i,m,c,t∗

+
∑
j,t∗:

(j,i,m,c)∈CoastablePurchTransitions
T<t∗≤t

iNumGpCoastingPurchj,i,m,c,t∗ ∗ SysPerGpm

+
∑
j,t∗:

(j,i,m,c)∈CoastableUpgTransitions
T<t∗≤t

iNumGpCoastingUpgj,i,m,c,t∗ ∗ SysPerGpm

(5.8)

• GpRetiredFromRoleSoFari,m,c,t denotes the total number of groups of systems i that
are transitioned out of mission m in component c during time periods up to and
including t.

∀(i,m, c) ∈ Roles, t ≤ T
GpRetiredFromRoleSoFari,m,c,t =∑

j,t∗:
j∈Outflowi,m,c

t∗≤min{t,T}

iNumGpFromStoragei,j,m,c,t∗

+
∑
j,t∗:

(i,j,m,c)∈MissionUpg
t∗≤min{t,T}

iNumGpInMissionUpgi,j,m,c,t∗

+
∑
J ,t∗

(i,J ,m,c)∈FutureTransitions
t∗≤t

iNumGpReplacedi,J ,m,c,t∗

+
∑
j,t∗:

(i,j,m,c)∈CoastablePurchTransitions
T<t∗≤t

iNumGpCoastingPurchi,j,m,c,t∗

+
∑
j,t∗:

(i,j,m,c)∈CoastableUpgTransitions
T<t∗≤t

iNumGpCoastingUpgi,j,m,c,t∗ (5.9)

52

• SysRetiredFromRoleSoFari,m,c,t denotes the total number of systems i that are tran-
sitioned out of mission m in component c during time periods up to and including
t.

∀(i,m, c) ∈ Roles, t ≤ T
SysRetiredFromRoleSoFari,m,c,t =

GpRetiredFromRoleSoFari,m,c,t ∗ SysPerGpm (5.10)

• NumSysReplacedi,J ,m,c,t denotes how many systems i are replaced by future system
J in mission m in component c at time t. This variable is defined for all (i,J ,m, c) ∈
FutureTransitions and for all t ≤ T .

∀(i,J ,m, c) ∈ FutureTransitions, t ≤ T
NumSysReplacedi,J ,m,c,t = iNumGpReplacedi,J ,m,c,t ∗ SysPerGpm (5.11)

Low-Rate Initial Production

• LripDeliveredp,i,t denotes the number of LRIP systems i in product family p that are
delivered to storage at time period t.

∀(p, i) ∈ LripProfiles, t ≤ T

LripDeliveredp,i,t =∑
t∗∈LripY ears

t+t∗≤T

LripPreDeliveryp,i,t∗ ∗ bLripSysBaseY earp,i,t+t∗ (5.12)

• LripProducedp,i,t denotes the number of LRIP systems i in product family p that finish
production in year t. Note that depending on the LRIP delivery profile, some of these
produced systems might not be put into storage.

∀(p, i) ∈ LripProfiles, t
LripProducedp,i,t =∑

t∗∈LripY ears
t+t∗≤T

LripPreProductionp,i,t∗ ∗ bLripSysBaseY earp,i,t+t∗ (5.13)

• LripSeedsConsumedi,t denotes the number of systems i that are consumed in the
production of LRIP systems and removed from storage in time period t. Note that
LRIP seeds are consumed (removed from storage) during the first production period

53

for that upgrade.

∀i, t ≤ T

LripSeedsConsumedi,t =∑
p,j,t∗:

(p,j)∈LripProfiles
t∗∈LripY ears

LripSeedSysp,j=i
LripConsumesSeedsp,j=1
t+t∗+LripDelayp,j≤T

LripPreProductionp,j,t∗ ∗ bLripSysBaseY earp,j,t+t∗+LripDelayp,j

(5.14)

• NumLripSysActivei,t denotes the number of systems i that are in administration or
production periods (i.e., active) due to LRIP at time period t. Here, βp,i is a binary
paramater that takes value 1 if LripDelayp,i = 0 and 0 if LripDelayp,i > 0.

∀i, t ≤ T

NumLripSysActivei,t =∑
p,t∗,t∗∗:

p∈SysPfMembershipi
t∗∈LripY ears

t∗∗−t∗−LripDelayp,i≤t<t∗∗−t∗+βp,i

LripPreProductionp,i,t∗ ∗ bLripSysBaseY earp,i,t∗∗

(5.15)

Storage

• NumSysPurchi,c,t denotes the number of systems i purchased for component c at time
t. These purchases are placed directly into storage.

∀i ∈ PurchasableSys, c, t ≤ T

NumSysPurchi,c,t = PurchBatchSizei ∗ iNumBatchesPurchi,c,t (5.16)

• NumSysInStoragei,c,t denotes the number of systems i assigned to component c that
are currently in storage at time t. This is calculated by adding what you start with
in storage, plus what flows into storage up to time t, minus what flows out of storage
up to time t. Hence this expression also counts systems that are “spoken for” in that

54

they are in the middle of production for a future in storage upgrade.

∀i, c, t ≤ T

NumSysInStoragei,c,t = iInitialInStoragei,c

+
∑
t∗≤t

NumSysPurchi,c,t∗

+
∑
j,m,t∗:

(i,j,m,c)∈Transitions
t∗≤t

NumSysFromStoragei,j,m,c,t∗

+
∑
j,t∗:

(j,i)∈StorageUpg
t∗≤t

iNumInStorageUpgj,i,c,t∗

+
∑
p,t∗:

(p,i)∈LripProfiles
t∗≤t

iLripDeliveredc,p,i,t∗

−
∑
j,m,t∗:

(j,i,m,c)∈Transitions
t∗≤t

NumSysFromStoragej,i,m,c,t∗

−
∑
j,t∗:

(i,j)∈StorageUpg
t∗≤t

iNumInStorageUpgi,j,c,t∗

−
∑
t∗≤t

iLripSeedsConsumedi,c,t∗

+
∑
J ,m,t∗:

(i,J ,m,c)∈FutureTransitions
t∗≤t

NumSysReplacedi,J ,m,c,t∗ (5.17)

• NumSysInStorageExchangeablei,c,t denotes the number of systems i in component c
in time period t that are not “spoken for” by a future in storage upgrade.

∀i, c, t ≤ T

NumSysInStorageExchangeablei,c,t = NumSysInStoragei,c,t

−
∑
j,t∗:

(i,j)∈StorageUpg
t<t∗≤t+UpgProdDelayi,j

iNumInStorageUpgi,j,c,t∗ (5.18)

55

Cost and Budgets

• PfStartupCostp,t gives the startup expense incurred at time t for family p.

∀p ∈ PfWithStartup, t ≤ T

PfStartupCostp,t =∑
t∗≤T

bPfStartupp,t∗ ∗ PfStartupCostSchedulep,t−t∗ (5.19)

• ComponentPurchAndUpgExpensec,t denotes the amount spent solely on purchases,
in mission upgrades, in storage upgrades, and delivered LRIP of non-future systems
for component c in time t within the conventional time horizon.

∀c, t ≤ T

ComponentPurchAndUpgExpensec,t =∑
i∈PurchasableSys

NumSysPurchi,c,t+PurchDelayi+1 ∗ PrePurchaseCosti

+
∑

i∈PurchasableSys

NumSysPurchi,c,t+PurchDelayi ∗ PurchCosti

+
∑
i,j,m:

(i,j,m,c)∈MissionUpg

NumSysInMissionUpgi,j,m,c,t+UpgDelayi,j+1 ∗ PreUpgCosti,j

+
∑
i,j,m:

(i,j,m,c)∈MissionUpg

NumSysInMissionUpgi,j,m,c,t+UpgDelayi,j ∗ UpgCosti,j

+
∑

(i,j)∈StorageUpg

iNumInStorageUpgi,j,c,t+UpgDelayi,j+1 ∗ PreUpgCosti,j

+
∑

(i,j)∈StorageUpg

iNumInStorageUpgi,j,c,t+UpgDelayi,j ∗ UpgCosti,j

+
∑
p,i,:

(p,i)∈LripProfiles
t+LripDelayp,i+1≤T

LripPreCostp,i ∗ iLripDeliveredc,p,i,t+LripDelayp,i+1

+
∑
p,i,:

(p,i)∈LripProfiles
t+LripDelayp,i≤T

LripCostp,i ∗ iLripDeliveredc,p,i,t+LripDelayp,i (5.20)

• ComponentPurchAndUpgExpenseWithoutPfEarmarkc,t denotes the amount spent
solely on purchases, in mission upgrades, in storage upgrades, and delivered LRIP of
non-future systems not assigned to a product family with an earmark in time t in the

56

conventional time horizon for component c.

∀c, t ≤ T

ComponentPurchAndUpgExpenseWithoutPfEarmarkc,t =∑
i∈PurchasableSys:

i 6∈SysInPfWithEarmarkt

NumSysPurchi,c,t+PurchDelayi+1 ∗ PrePurchaseCosti

+
∑

i∈PurchasableSys:
i 6∈SysInPfWithEarmarkt

NumSysPurchi,c,t+PurchDelayi ∗ PurchCosti

+
∑
i,j,m:

(i,j,m,c)∈MissionUpg
j 6∈SysInPfWithEarmarkt

NumSysInMissionUpgi,j,m,c,t+UpgDelayi,j+1 ∗ PreUpgCosti,j

+
∑
i,j,m:

(i,j,m,c)∈MissionUpg
j 6∈SysInPfWithEarmarkt

NumSysInMissionUpgi,j,m,c,t+UpgDelayi,j ∗ UpgCosti,j

+
∑

(i,j)∈StorageUpg:
j 6∈SysInPfWithEarmarkt

iNumInStorageUpgi,j,c,t+UpgDelayi,j+1 ∗ PreUpgCosti,j

+
∑

(i,j)∈StorageUpg:
j 6∈SysInPfWithEarmarkt

iNumInStorageUpgi,j,c,t+UpgDelayi,j ∗ UpgCosti,j

+
∑
p,i,:

(p,i)∈LripProfiles
t+LripDelayp,i+1≤T

i 6∈SysInPfWithEarmarkt

LripPreCostp,i ∗ iLripDeliveredc,p,i,t+LripDelayp,i+1

+
∑
p,i,:

(p,i)∈LripProfiles
t+LripDelayp,i≤T

i 6∈SysInPfWithEarmarkt

LripCostp,i ∗ iLripDeliveredc,p,i,t+LripDelayp,i (5.21)

• PurchAndUpgExpenset denotes the amount spent solely on purchases, in mission
upgrades, in storage upgrades, and delivered LRIP of non-future systems for all com-
ponents in time t within the conventional time horizon.

∀t ≤ T

PurchAndUpgExpenset =
∑
c

ComponentPurchAndUpgExpensec,t (5.22)

• PfPurchAndUpgExpensesp,t denotes the amount spent solely on purchases, in mission
upgrades, in storage upgrades, and delivered LRIP of non-future systems assigned to

57

a product family p in time t in the conventional time horizon.

∀p, t ≤ T

PfPurchAndUpgExpensesp,t =∑
i,c:

i∈PurchasableSys
i∈ProductFamilyp

NumSysPurchi,c,t+PurchDelayi+1 ∗ PrePurchaseCosti

+
∑
i,c:

i∈PurchasableSys
i∈ProductFamilyp

NumSysPurchi,c,t+PurchDelayi ∗ PurchCosti

+
∑
i,j,m,c:

(i,j,m,c)∈MissionUpg
j∈ProductFamilyp

NumSysInMissionUpgi,j,m,c,t+UpgDelayi,j+1 ∗ PreUpgCosti,j

+
∑
i,j,m,c:

(i,j,m,c)∈MissionUpg
j∈ProductFamilyp

NumSysInMissionUpgi,j,m,c,t+UpgDelayi,j ∗ UpgCosti,j

+
∑
i,j,c:

(i,j)∈StorageUpg:
j∈ProductFamilyp

iNumInStorageUpgi,j,c,t+UpgDelayi,j+1 ∗ PreUpgCosti,j

+
∑
i,j,c:

(i,j)∈StorageUpg:
j∈ProductFamilyp

iNumInStorageUpgi,j,c,t+UpgDelayi,j ∗ UpgCosti,j

+
∑
i,c:

(p,i)∈LripProfiles
t+LripDelayp,i+1≤T

LripPreCostp,i ∗ iLripDeliveredc,p,i,t+LripDelayp,i+1

+
∑
i,c:

(p,i)∈LripProfiles
t+LripDelayp,i≤T

LripCostp,i ∗ iLripDeliveredc,p,i,t+LripDelayp,i (5.23)

• NonPurchAndUpgPfExpensesp,t denotes the amount spent by product family p on
procurement active costs, startup costs, and LRIP produced but not delivered in time

58

t.

∀p, t ≤ T

NonPurchAndUpgPfExpensesp,t =

bPfActivep,t ∗ PfProcureActiveCostp
+ PfStartupCostp,t

+
∑
c,i:

(p,i)∈LripProfiles
t+LripDelayp,i+1≤T

iLripProducedc,p,i,t+LripDelayp,i+1 ∗ LripPreCostp,i

−
∑
c,i:

(p,i)∈LripProfiles
t+LripDelayp,i+1≤T

iLripDeliveredc,p,i,t+LripDelayp,i+1 ∗ LripPreCostp,i

+
∑
c,i:

(p,i)∈LripProfiles
t+LripDelayp,i≤T

iLripProducedc,p,i,t+LripDelayp,i ∗ LripCostp,i

−
∑
c,i:

(p,i)∈LripProfiles
t+LripDelayp,i≤T

iLripDeliveredc,p,i,t+LripDelayp,i ∗ LripCostp,i (5.24)

• AllNonPurchAndUpgPfExpensest denotes the amount spent by all product families
on procurement active costs, startup costs, and LRIP produced but not delivered in
time t.

∀t ≤ T

AllNonPurchAndUpgPfExpensest =
∑
p

NonPurchAndUpgPfExpensep,t

(5.25)

• ProcureExpenset denotes the amount spent on procurement of non-future systems (in
storage upgrades, in mission upgrades, purchases, product families, and LRIP) at time
t within the conventional time horizon.

∀t ≤ T

ProcureExpenset = PurchAndUpgExpenset + AllNonPurchAndUpgPfExpenset

(5.26)

• FutureComponentPurchAndUpgExpensec,t denotes the amount spent solely on pur-
chases, in mission upgrades, and in storage upgrades of future systems in addition
to purchases and upgrades of coasting non-future systems for component c in time
t within the conventional and extended time horizons. Here the binary parameter

59

γi,J ,m equals 1 if FutureTransitionLongLeadi,J ,m > 0 and 0 otherwise.

∀c, t ≤ T
FutureComponentPurchAndUpgExpensec,t =∑

i,J ,m:
(i,J ,m,c)∈FutureTransitions

t∗=t+FutureTransitionDelayi,J ,m+γi,J ,m≤T

 NumSysReplacedi,J ,m,c,t∗
∗FutureTransitionCosti,J ,m,c
∗FutureTransitionLongLeadi,J ,m,c

+
∑
i,J ,m:

(i,J ,m,c)∈FutureTransitions
t∗=t+FutureTransitionDelayi,J ,m≤T

 NumSysReplacedi,J ,m,c,t∗
∗FutureTransitionCosti,J ,m,c
∗(1− FutureTransitionLongLeadi,J ,m,c)

+
∑
i,j,m:

(i,j,m,c)∈CoastablePurchTransitions
t∗=t+PurchDelayi+1

(
iNumGpCoastingPurchi,j,m,c,t∗
∗PrePurchaseCosti ∗ SysPerGpm

)

+
∑
i,j,m:

(i,j,m,c)∈CoastablePurchTransitions
t∗=t+PurchDelayi

(
iNumGpCoastingPurchi,j,m,c,t∗
∗PurchaseCosti ∗ SysPerGpm

)

+
∑
i,j,m:

(i,j,m,c)∈CoastableUpgTransitions
t∗=t+UpgDelayi+1

(
iNumGpCoastingUpgi,j,m,c,t∗
∗PreUpgCosti,j ∗ SysPerGpm

)

+
∑
i,j,m:

(i,j,m,c)∈CoastableUpgTransitions
t∗=t+UpgDelayi

(
iNumGpCoastingUpgi,j,m,c,t∗
∗UpgCosti,j ∗ SysPerGpm

)
(5.27)

• FutureComponentPurchAndUpgExpenseWithoutPfEarmarkc,t denotes the amount
spent solely on purchases, in mission upgrades, and in storage upgrades of future sys-
tems in addition to purchases and upgrades of coasting non-future systems for com-
ponent c for all systems in product families without earmarks in time t within the
conventional and extended time horizons. Here the binary parameter γi,J ,m equals 1 if

60

FutureTransitionLongLeadi,J ,m > 0 and 0 otherwise.

∀c, t ≤ T
FutureComponentPurchAndUpgExpenseWithoutPfEarmarkc,t =∑

i,J ,m:
(i,J ,m,c)∈FutureTransitions

t∗=t+FutureTransitionDelayi,J ,m+γi,J ,m≤T

 NumSysReplacedi,J ,m,c,t∗
∗FutureTransitionCosti,J ,m,c
∗FutureTransitionLongLeadi,J ,m,c

+
∑
i,J ,m:

(i,J ,m,c)∈FutureTransitions
t∗=t+FutureTransitionDelayi,J ,m≤T

 NumSysReplacedi,J ,m,c,t∗
∗FutureTransitionCosti,J ,m,c
∗(1− FutureTransitionLongLeadi,J ,m,c)

+
∑
i,j,m:

(i,j,m,c)∈CoastablePurchTransitions
t∗=t+PurchDelayi+1

j 6∈SysInPfWithEarmarkt

(
iNumGpCoastingPurchi,j,m,c,t∗
∗PrePurchaseCosti ∗ SysPerGpm

)

+
∑
i,j,m:

(i,j,m,c)∈CoastablePurchTransitions
t∗=t+PurchDelayi

j 6∈SysInPfWithEarmarkt

(
iNumGpCoastingPurchi,j,m,c,t∗
∗PurchaseCosti ∗ SysPerGpm

)

+
∑
i,j,m:

(i,j,m,c)∈CoastableUpgTransitions
t∗=t+UpgDelayi+1

j 6∈SysInPfWithEarmarkt

(
iNumGpCoastingUpgi,j,m,c,t∗
∗PreUpgCosti,j ∗ SysPerGpm

)

+
∑
i,j,m:

(i,j,m,c)∈CoastableUpgTransitions
t∗=t+UpgDelayi

j 6∈SysInPfWithEarmarkt

(
iNumGpCoastingUpgi,j,m,c,t∗
∗UpgCosti,j ∗ SysPerGpm

)
(5.28)

• FuturePurchAndUpgExpenset denotes the amount spent solely on purchases, in mis-
sion upgrades, and in storage upgrades of future systems and purchases and upgrades
of coasting non-future systems for all components in time t within the conventional
and extended time horizons.

∀t ≤ T

FuturePurchAndUpgExpenset =
∑
c

FutureComponentPurchAndUpgExpensec,t

(5.29)

• FutureAllNonPurchAndUpgProgramExpensest denotes the amount spent by future
programs on procurement active costs, startup costs, and LRIP in time t. Here, the

61

binary parameter ηJ equals 1 if FutureSysLripLongLeadJ > 0 and 0 otherwise.

∀t ≤ T
FutureAllNonPurchAndUpgProgramExpensest =∑

F

bFutureProgramF ∗ FutureProgramStartupCostScheduleF ,t

+
∑
F

bFutureProgramF ∗ FutureProgramActiveCostScheduleF ,t

+
∑
J ,c:

t∗=t+FutureSysLripDelayJ+ηJ≤T

bFutureSysComponentJ ,c
∗FutureSysLripCostJ
∗FutureSysLripProfileF ,c,t∗
∗FutureSysLripLongLeadJ

+
∑
J ,c:

t∗=t+FutureSysLripDelayJ≤T

bFutureSysComponentJ ,c
∗FutureSysLripCostJ
∗FutureSysLripProfileF ,c,t∗
∗(1− FutureSysLripLongLeadJ)

(5.30)

• FutureNonPurchAndUpgPfExpensesp,t denotes the amount spent by product family
p in time t for procurement active costs associated with coasting systems.

∀p, t ≤ T
FutureNonPurchAndUpgPfExpensesp,t ={

0 t ≤ T
bPfActivep,t ∗ PfProcureActiveCostp t > T

(5.31)

• FutureAllNonPurchAndUpgPfExpensest denotes the amount spent by all product
families in time t for procurement active costs associated with coasting systems.

∀t ≤ T
FutureAllNonPurchAndUpgPfExpensest =∑

p

FutureNonPurchAndUpgPfExpenset (5.32)

• FuturePfPurchAndUpgExpensesp,t denotes the amount spent by product family p

62

on the procurement of coasting systems in time t.

∀p, t ≤ T
FuturePfPurchAndUpgExpensesp,t =∑

i,j,m,c:
(i,j,m,c)∈CoastablePurchTransitions

t∗=t+PurchDelayi+1
j∈ProductFamilyp

(
iNumGpCoastingPurchi,j,m,c,t∗
∗PrePurchaseCosti ∗ SysPerGpm

)

+
∑
i,j,m,c:

(i,j,m,c)∈CoastablePurchTransitions
t∗=t+PurchDelayi
j∈ProductFamilyp

(
iNumGpCoastingPurchi,j,m,c,t∗
∗PurchaseCosti ∗ SysPerGpm

)

+
∑
i,j,m,c:

(i,j,m,c)∈CoastableUpgTransitions
t∗=t+UpgDelayi+1
j∈ProductFamilyp

(
iNumGpCoastingUpgi,j,m,c,t∗
∗PreUpgCosti,j ∗ SysPerGpm

)

+
∑
i,j,m,c:

(i,j,m,c)∈CoastableUpgTransitions
t∗=t+UpgDelayi
j∈ProductFamilyp

(
iNumGpCoastingUpgi,j,m,c,t∗
∗UpgCosti,j ∗ SysPerGpm

)
(5.33)

• FutureProcureExpenset denotes the amount spent on procurement of future systems
(in storage upgrades, in mission upgrades, purchases, future programs, and LRIP) and
coasting systems for all components at time t within the conventional and extended
time horizons.

∀t ≤ T
FutureProcureExpenset =

FuturePurchAndUpgExpenset

+ FutureAllNonPurchAndUpgPfExpensest

+ FutureAllNonPurchAndUpgProgramExpensest (5.34)

• OSExpenset denotes the total amount spent on O&S of non-future systems at time t
within the conventional time horizon.

∀t ≤ T

OSExpenset =
∑

(i,m,c)∈Roles

SysOSCosti,m ∗NumSysInMissioni,m,c,t (5.35)

• FutureOSExpenset denotes the total amount spent on O&S of future systems at
time t in the conventional and extended time horizons and the total amount spent for

63

conventional systems in the extended time horizon.

∀t ≤ T
FutureOSExpenset =∑

i,J ,m,c,t∗:
(i,J ,m)∈FutureTransitions

t∗≤t

(NumSysReplacedi,J ,m,c,t∗ ∗ FutureSysOSCostJ)

+

0 t ≤ T

OSExpenseT T < t ≤ T

−
∑

i,J ,m,c,t∗:
(i,J ,m,c)∈FutureTransitions

(i,m,c)∈Roles
T<t∗≤t

(NumSysReplacedi,J ,m,c,t∗ ∗ SysOSCosti,m)

+
∑

j,i,m,c,t∗

(j,i,m,c)∈CoastablePurchTransitions
(i,m,c)∈Roles

t∗≤t

(
iNumGpCoastingPurchj,i,m,c,t∗
∗SysPerGpm ∗ SysOSCosti,m

)

+
∑

j,i,m,c,t∗

(j,i,m,c)∈CoastableUpgTransitions
(i,m,c)∈Roles

t∗≤t

(
iNumGpCoastingUpgj,i,m,c,t∗
∗SysPerGpm ∗ SysOSCosti,m

)

−
∑

i,j,m,c,t∗

(i,j,m,c)∈CoastablePurchTransitions
(i,m,c)∈Roles

t∗≤t

(
iNumGpCoastingPurchi,j,m,c,t∗
∗SysPerGpm ∗ SysOSCosti,m

)

−
∑

i,j,m,c,t∗

(i,j,m,c)∈CoastableUpgTransitions
(i,m,c)∈Roles

t∗≤t

(
iNumGpCoastingUpgi,j,m,c,t∗
∗SysPerGpm ∗ SysOSCosti,m

)
(5.36)

• RdteEffortExpensep,t denotes the amount spent on RDT&E by product family p at
time t within the conventional time horizon.

∀p ∈ PfWithRdte, t ≤ T

RdteEffortExpensep,t =

bPfActivep,t ∗ PfRdteActiveCostp
+

∑
d∈AllowedRdteDelaysp

bRdteDelayp,d ∗RdteCostProfilesp,d,t (5.37)

• RdteExpenset denotes the amount spent on all non-future RDT&E efforts at time t

64

within the conventional time horizon.

∀t ≤ T

RdteExpenset =
∑

p∈PfWithRdte

RdteEffortExpensep,t (5.38)

• FutureRdteExpenset denotes the amount spent on RDT&E for all future programs
at time t within the conventional and extended time horizons.

∀t ≤ T
FutureRdteExpenset =∑

F

bFutureProgramF ∗ FutureProgramRdteCostScheduleF ,t

+

0 t ≤ T∑
p∈PfWithRdteActive

bPfActivep,t ∗ PfRdteActiveCostp T < t ≤ T

(5.39)

• CombinedExpenset denotes the combined amount spent on any set of the procurement,
O&S, and RDT&E expenses for time period t incurred by non-future systems. Here
bProc, bOS, and bRdte are user-specified binary indicators that take on value 1 if that
expense type is included in the combined expense, and 0 otherwise.

∀t ≤ T

CombinedExpenset =

bProc ∗ ProcureExpenset + bOS ∗OSExpenset + bRdte ∗RdteExpenset
(5.40)

• FutureCombinedExpenset denotes the combined amount spent on any set of the pro-
curement, O&S, and RDT&E expenses for time period t incurred by future systems.

∀t ≤ T
FutureCombinedExpenset =

bProc ∗ FutureProcureExpenset
+ bOS ∗ FutureOSExpenset
+ bRdte ∗ FutureRdteExpenset (5.41)

• CombinedComponentEarmarkSpentt denotes the combined amount of component
earmarks spent at time t.

∀t ≤ T

CombinedComponentEarmarkSpentt =
∑
c

fComponentEarmarkSpentc,t

(5.42)

65

• CombinedPfEarmarkSpentProductiont denotes the combined amount of product
family earmarks spent at time t on all production associated costs.

∀t ≤ T

CombinedPfEarmarkSpentProductiont =
∑
p

fPfEarmarkSpentProductionp,t

(5.43)

• CombinedPfEarmarkSpentRdtet denotes the combined amount of product family
earmarks spent at time t on RDT&E.

∀t ≤ T

CombinedPfEarmarkSpentRdtet =
∑
p

fPfEarmarkSpentRdtep,t (5.44)

Production

• NumSysInProductioni,t denotes the number of systems of type i that are in a pro-
duction period at time t. If a particular mission upgrade has no production delay,
then delivery is also counted as a production period in those cases. This counts all
mission upgrades, storage upgrades, and purchases including coasting systems in all
components.

∀i, t ≤ T
NumSysInProductioni,t =

∑
c

PurchProdDelayi=0

NumSysPurchi,c,t t ≤ T

0 t > T

+
∑
c,t∗:

t<t∗≤t+PurchProdDelayi
t∗≤T

PurchProdDelayi>0

NumSysPurchi,c,t∗

+

∑
j,m,c:

(j,i,m,c)∈MissionUpg
UpgProdDelayj,i=0

NumSysInMissionUpgj,i,m,c,t t ≤ T

0 t > T

+
∑

j,m,c,t∗:
(j,i,m,c)∈MissionUpg

t<t∗≤t+UpgProdDelayj,i
t∗≤T

UpgProdDelayj,i>0

NumSysInMissionUpgj,i,m,c,t∗

66

+

∑
j,c:

(j,i)∈StorageUpg
UpgProdDelayj,i=0

iNumInStorageUpgj,i,c,t t ≤ T

0 t > T

+
∑
j,c,t∗:

(j,i)∈StorageUpg
t<t∗≤t+UpgProdDelayj,i

t∗≤T
UpgProdDelayj,i>0

iNumInStorageUpgj,i,c,t∗

+

0 t ≤ T∑

j,m,c:
(j,i,m,c)∈CoastablePurchTransitions

PurchProdDelayi=0

iNumGpCoastingPurchj,i,m,c,t
* SysPerGpm

t > T

+
∑

j,m,c,t∗:
(j,i,m,c)∈CoastablePurchTransitions

t<t∗≤t+PurchProdDelayi
t∗>T

PurchProdDelayi>0

iNumGpCoastingPurchj,i,m,c,t∗
∗SysPerGpm

+

0 t ≤ T∑

j,m,c:
(j,i,m,c)∈CoastableUpgTransitions

UpgProdDelayj,i=0

iNumGpCoastingUpgj,i,m,c,t
∗SysPerGpm

t > T

+
∑

j,m,c,t∗:
(j,i,m,c)∈CoastableUpgTransitions

t<t∗≤t+UpgProdDelayj,i
t∗>T

UpgProdDelayj,i>0

iNumGpCoastingUpgj,i,m,c,t∗
∗SysPerGpm

(5.45)

• NumSysInAdminPeriodi,t denotes the number of non-future systems of type i that
are in their administrative period at time t. This counts all mission upgrades, storage

67

upgrades, and purchases.

∀i, t ≤ T
NumSysInAdminPeriodi,t =∑

c,t∗

t+PurchProdDelayi<t
∗≤t+PurchDelayi

t∗≤T

NumSysPurchi,c,t∗

+
∑
j,c,t∗:

(j,i)∈StorageUpg
t+UpgProdDelayj,i<t

∗≤t+UpgDelayj,i
t∗≤T

iNumInStorageUpgj,i,c,t∗

+
∑

j,m,c,t∗:
(j,i,m,c)∈MissionUpg

t+UpgProdDelayj,i<t
∗≤t+UpgDelayj,i

t∗≤T

NumSysInMissionUpgj,i,m,c,t∗

+
∑

j,m,c,t∗:
(j,i,m,c)∈CoastablePurchTransitions

t+PurchProdDelayi<t
∗≤t+PurchDelayi

t∗>T

iNumGpCoastingPurchj,i,m,c,t∗ ∗ SysPerGpm

+
∑

j,m,c,t∗:
(j,i,m,c)∈CoastableUpgTransitions

t+UpgProdDelayj,i<t
∗≤t+UpgDelayj,i

t∗>T

iNumGpCoastingUpgj,i,m,c,t∗ ∗ SysPerGpm

(5.46)

• NumSysDeliveredComponenti,c,t denotes the number of systems of type i that are
delivered (i.e., completed production) to component c in time t via some production
facility. This counts all mission upgrades, storage upgrades, and purchases.

∀i, c, t ≤ T

NumSysDeliveredComponenti,c,t =∑
i∗∈PurchasableSys:

i∗=i

NumSysPurchi∗,c,t

+
∑
j:

(j,i)∈StorageUpg

iNumInStorageUpgj,i,c,t

+
∑
j,m:

(j,i,m,c)∈MissionUpg

NumSysInMissionUpgj,i,m,c,t (5.47)

• NumSysDeliveredi,t denotes the number of systems of type i that are delivered (i.e.,
completed production) in time t via some production facility. This counts all mission

68

upgrades, storage upgrades, and purchases in all components.

∀i, t ≤ T

NumSysDeliveredi,t =
∑
c

NumSysDeliveredComponenti,c,t (5.48)

• NumSysDeliveredIncludingLripProducedi,t denotes the number of systems of type i
that are delivered (i.e., completed production) in time t via some production facility.
This counts all mission upgrades, storage upgrades, purchases, and LRIP produced
(icluding those LRIP systems that are never available for fielding to a mission).

∀i, t ≤ T

NumSysDeliveredIncludingLripProducedi,t =

NumSysDeliveredi,t +
∑
p:

(p,i)∈LripProfiles

LripProducedp,i,t (5.49)

• NumCoastingSysDeliveredi,t denotes the number of coasting systems of type i that
are delivered (i.e., completed production) in future time period t via some production
facility. This counts all coasting purchases and upgrades.

∀i ∈ CoastableSys, T < t ≤ T
NumCoastingSysDeliveredi,t =∑

j,m,c:
(j,i,m,c)∈CoastablePurchTransitions

iNumGpCoastingPurchj,i,m,c,t ∗ SysPerGpm

+
∑
j,m,c:

(j,i,m,c)∈CoastableUpgTransitions

iNumGpCoastingUpgj,i,m,c,t ∗ SysPerGpm

(5.50)

Product Families

• PfSysF ieldedp,c,t denotes the total number of systems fielded from product family p
to component c in conventional time period t.

∀p ∈ PfWithRatios, c, t ≤ T

PfSysF ieldedp,c,t =∑
i∈ProductFamilyp

j,m:(j,i,m,c)∈Transitions

NumSysFromStoragej,i,m,c,t

+
∑

i∈ProductFamilyp
j,m:(j,i,m,c)∈MissionUpg

NumSysInMissionUpgj,i,m,c,t (5.51)

69

• PfSysF ieldedWindowp,c,t denotes the total number of systems fielded from product
family p to component c over the time periods given by PfRatioWindowp starting in
time period t.

∀p ∈ PfWithRatios, c, t+ PfRatioWindowp − 1 ≤ T

PfSysF ieldedWindowp,c,t =
∑
t∗:

t≤t∗≤t+PfRatioWindowp−1

PfSysF ieldedp,c,t∗ (5.52)

Objective Function

The objective function performs different roles depending on the current phase of a mis-
sion priority tier. During the “schedule” phase, the objective function minimizes the num-
ber of schedule violations. The “age” phase objective minimizes the number of system-year
economic useful life violations. Similarly, the “yearly budget” phase objective minimizes the
amount of yearly budget violations and the “horizon budget” phase objective minimizes the
amount of horizon budget violations. The “performance” phase maximizes the cumulative
performance of the fleet over the desired planning horizon (either the conventional horizon,
or the conventional plus extended horizon if future systems are included) by summing the
performance (αi,m parameter) of each system in each mission in each component at each
time period. This approach tends to choose modernization schedules that upgrade as many
systems as possible as soon as possible so that performance improvements can take effect
over as much of the planning horizon as possible. This is a broad characterization however,
and the model is also able to avoid early modernization options when it is preferable to
wait for even better options in the future. Finally during the “cost” phase, the objective
is to minimize a user-chosen combination of cumulative procurement, O&S, and RDT&E
expenditures. A detailed description of the optimization phases can be found in the “Mission
Priority Tiers” section of Chapter 1.

It should also be noted that the formulation source code contains additional variable
expressions relating to the objective function that are not documented here. These additional
structures are used to easily recreate legacy behavior for troubleshooting and debugging, but
are not used by the CPAT tool itself.

• TierScheduleDeficits denotes the sum of all “modernized,” “final mandate,” or “prod-
uct family” deficit variables throughout the planning horizon. This takes on value zero

70

only if all schedule mandates are met.

TierScheduleDeficits =∑
i,m,t:

(i,m)∈SysMissions
MissionT ierm=CurrentT ier

t≤T

iModernizedDeficiti,m,t

+
∑
i,m,c:

(i,m,c)∈Roles
MissionT ierm=CurrentT ier

iF inalMandateDeficiti,m,c

+
∑
J ,c:

MissionT ierm=MissionT ierFutureMissionMapJ

iFutureSysMandateDeficitJ ,c

+
∑
p,t:
t≤T

iPfDeliveryDeficitp,t (5.53)

• TierAgeOverages denotes the sum of the system-year overages variable throughout the
planning horizon. This takes on value zero only if all economic useful life constraints
are met.

TierAgeOverages =
∑
i,m,c,t:

(i,m,c)∈Roles
MissionT ierm=CurrentT ier

t≤T

iSysY earAgeOveragesi,m,c,t (5.54)

• Y earlyBudgetOverruns denotes the sum of all budget overage amounts for all yearly
budget types throughout the conventional and extended planning horizons. This takes

71

on value zero only if all budgets are satisfied.

Y earlyBudgetOverruns =∑
t≤T

fProcureBudgetOverrunt

+
∑
t≤T

fOSBudgetOverrunt

+
∑
t≤T

fRdteBudgetOverrunt

+
∑
t≤T

fCombinedBudgetOverrunt

+
∑

T<t≤T

fFutureProcureBudgetOverrunt

+
∑

T<t≤T

fFutureOSBudgetOverrunt

+
∑

T<t≤T

fFutureRdteBudgetOverrunt

+
∑

T<t≤T

fFutureCombinedBudgetOverrunt (5.55)

• TotalBudgetOverruns denotes the sum of all budget overage amounts for all horizon
budget types. This takes on value zero only if all budgets are satisfied.

TotalBudgetOverruns =

fTotalProcureBudgetOverrun

+ fTotalOSBudgetOverrun

+ fTotalRdteBudgetOverrun

+ fTotalCombinedBudgetOverrun (5.56)

• TotalPerformance denotes the cumulative performance of all systems in the fleet.
This includes future systems and coasting systems throughout the conventional and
extended time horizons.

TotalPerformance =∑
i,m,c,t:

(i,m,c)∈Roles
t≤T

αi,m ∗NumSysInMissioni,m,c,t

+
∑

i,J ,m,c,t:
(i,J ,m,c)∈FutureTransitions

t≤T

(
αi,J ,m,c ∗NumSysReplacedi,J ,m,c,t
∗(T − t+ 1)

)
(5.57)

72

• CostPhaseExpenses denote the combined expenses procurement, O&S, and RDT&E
to minimize in the last phase of the optimization for all time periods incurred by
non-future systems and future systems. Here bCP−Proc, bCP−OS, and bCP−Rdte are user-
specified binary indicators that take on value 1 if that expense type is included in the
cost phase, and 0 otherwise.

CostPhaseExpenses =∑
t≤T

(
bCP−Proc ∗ ProcureExpenset + bCP−OS ∗OSExpenset
+bCP−Rdte ∗RdteExpenset

)
+
∑
t≤T

(
bCP−Proc ∗ FutureProcureExpenset + bCP−OS ∗ FutureOSExpenset
+bCP−Rdte ∗ FutureRdteExpenset

)
(5.58)

• ObjFunV al denotes the objective function that either minimizes schedule violations,
minimizes the system-year age overages, minimizes yearly budget overruns, minimizes
horizon budget overruns, maximizes cumulative fleet performance, or minimizes the
cumulative combined fleet cost, depending on the current phase. The SchedulePhase,
AgePhase, Y earlyBudgetPhase, HorizonBudgetPhase, PerformancePhase, and
CostPhase are binary parameters that indicate which phase is currently being op-
timized. One of these parameters is always 1, while the rest are 0.

Maximize ObjFunV al =

− SchedulePhase ∗ TierScheduleDeficits
− AgePhase ∗ TierAgeOverages
− Y earlyBudgetPhase ∗ Y earlyBudgetOverruns
−HorizonBudgetPhase ∗ TotalBudgetOverruns
+ PerformancePhase ∗ TotalPerformance
− CostPhase ∗ CostPhaseExpenses (5.59)

73

This page intentionally left blank.

Chapter 6

MILP Constraints

Multi-Tier, Multi-Phase Constraints

• For phases after the schedule phase, limit the amount of schedule violation so that
it cannot increase from the violation amount reported in the schedule phase. During
the schedule phase, the TierScheduleDeficitBound parameter is not restrictive. This
partially addresses the Tier Phases business rule.

TierScheduleDeficits ≤ TierScheduleDeficitBound (6.1)

• For phases after the age phase, limit the amount of economic useful life violations
so that it cannot increase from the overages reported in the age phase. Prior to
and during the age phase, the AgeOverrunBound parameter is not restrictive. This
partially addresses the Tier Phases business rule.

TierAgeOverages ≤ AgeOverrunBound (6.2)

• For phases after the yearly budget phase, limit the amount of yearly budget overrun so
that it cannot increase from the overages reported in the yearly budget phase. Prior
to and during the yearly budget phase, the Y earlyBudgetOverrunBound parameter
is not restrictive. This partially addresses the Tier Phases business rule.

Y earlyBudgetOverruns ≤ Y earlyBudgetOverrunBound (6.3)

• For phases after the horizon budget phase, limit the amount of horizon budget overrun
so that it cannot increase from the overages reported in the horizon budget phase.
Prior to and during the horizon budget phase, the HorizonBudgetOverrunBound
parameter is not restrictive. This partially addresses the Tier Phases business rule.

TotalBudgetOverruns ≤ HorizonBudgetOverrunBound (6.4)

• For phases after the performance phase, ensure that the cumulative fleet performance
does not degrade from the value found in the performance phase. Prior to and during
the performance phase, the MinimumPerformance parameter is not restrictive. This
partially addresses the Tier Phases business rule.

TotalPerformance >= MinimumPerformance− 0.001 (6.5)

75

• For phases after the cost phase, ensure that the combined fleet cost for all costs included
in the cost phase does not increase from the value found in the cost phase. Prior to and
during the cost phase, the MaximumCost parameter is not restrictive. This partially
addresses the Tier Phases business rule.

CostPhaseExpenses <= MaximumCost (6.6)

• If hard limits are placed on any of the phase objective metrics, the corresponding
constraint is enforced during all phases. If no limit is defined, then the constraint is
not enforced. This addresses the Hard Limits on Tier Phases business rule.

TierScheduleDeficits ≤ ScheduleV iolationLimit (6.7)

TierAgeOverages ≤ AgeV iolationLimit (6.8)

Y earlyBudgetOverruns ≤ Y earlyBudgetOverrunLimit (6.9)

TotalBudgetOverruns ≤ TotalBudgetOverrunLimit (6.10)

TotalPerformance ≥ PerformanceLimit (6.11)

CostPhaseExpenses ≤ CostLimit (6.12)

• Constraints (6.13)–(6.21) ensure that no modernization occurs for missions in lower-
priority tiers than the current tier and address the Priority Tiers business rule.

∀(i, j,m, c) ∈MissionUpg, t ≤ T where MissionT ierm > CurrentT ier

NumSysInMissionUpgi,j,m,c,t = 0 (6.13)

∀(i, j,m, c) ∈ Transitions, t ≤ T where MissionT ierm > CurrentT ier

NumSysFromStoragei,j,m,c,t = 0 (6.14)

∀(i,m, c) ∈ CoastableRoles where MissionT ierm > CurrentT ier

iCoastingLevel(i,m, c) = 0 (6.15)

∀(i, j,m, c) ∈ CoastablePurchTransitions,
T < t ≤ T where MissionT ierm > CurrentT ier

iNumGpCoastingPurchi,j,m,c,t = 0 (6.16)

∀(i, j,m, c) ∈ CoastableUpgTransitions,
T < t ≤ T where MissionT ierm > CurrentT ier

iNumGpCoastingUpgi,j,m,c,t = 0 (6.17)

∀(i,J ,m, c) ∈ FutureTransitions, t ≤ T where MissionT ierm > CurrentT ier

iNumGpReplacedi,J ,m,c,t = 0 (6.18)

76

∀(i,m) ∈ SysMissions, t ≤ T where MissionT ierm > CurrentT ier

iModernizedDeficiti,m,t = 0 (6.19)

∀(i,m, c) ∈MandatedRoles where MissionT ierm > CurrentT ier

iF inalMandateDeficiti,m,c = 0 (6.20)

∀J , c where MissionT ierFutureMissionMapJ > CurrentT ier

iFutureSysMandateDeficitJ ,c = 0 (6.21)

• Constraints (6.22)–(6.30) ensure that the modernization schedules previously deter-
mined for higher-priority tiers continue to be held while optimizing lower priority tiers,
also addressing the Priority Tiers business rule.

∀(i, j,m, c, t, N) ∈ fixedSysInMissionUpg

iNumGpInMissionUpgi,j,m,c,t = N (6.22)

∀(i, j,m, c, t, N) ∈ fixedSysFromStorage
iNumGpFromStoragei,j,m,c,t = N (6.23)

∀(i,m, c,N) ∈ fixedCoastingLevel
iCoastingLevel(i,m, c) = N (6.24)

∀(i, j,m, c, t, N) ∈ fixedGpCoastingPurch
iNumGpCoastingPurchi,j,m,c,t = N (6.25)

∀(i, j,m, c, t, N) ∈ fixedGpCoastingUpg
iNumGpCoastingUpgi,j,m,c,t = N (6.26)

∀(i,J ,m, c, t, N) ∈ fixedGpReplaced
iNumGpReplacedi,J ,m,c,t = N (6.27)

∀(i,m, t,N) ∈ fixedModernizedDeficit

iModernizedDeficiti,m,t = N (6.28)

∀(i,m, c,N) ∈ fixedF inalMandateDeficit

iF inalMandateDeficiti,m,c = N (6.29)

∀(J , c, N) ∈ fixedF inalFutureMandateDeficit

iFutureSysMandateDeficitJ ,c = N (6.30)

77

• Constraints (6.31)–(6.33) ensure that if one mission in a specific component precedes
another another mission in a specific component, than the succeeding mission cannot
field until the preceding mission has 1) finished fielding and 2) modernized 100% of its
initial systems. This fulfills the Component Mission Succession business rule.

∀(c,m) ∈ SuccessorComponentMissions, t ≤ T∑
i,j: (i,j,m,c)∈Transitions

iNumGpFromStoragei,j,m,c,t

+
∑

i,j: (i,j,m,c)∈MissionUpg

iNumGpInMissionUpgi,j,m,c,t

≤ maxGpTransitionLimit ∗ bMissionCanFieldm,c,t (6.31)

∀(c,m) ∈ SuccessorComponentMissions, t ≤ T

1− bMissionCanFieldm,c,t

≤
∑

i,m∗,c∗:
(i,m∗,c∗)∈Roles

(c∗,m∗,c,m)∈ComponentMissionSuccessions
InitialGpInMissioni,m∗,c∗>0

NumGpInMissioni,m∗,c∗,t

+
∑

i,j,m∗,c∗,t∗:
(i,j,m∗,c∗)∈Transitions

(c∗,m∗,c,m)∈ComponentMissionSuccessions
t≤t∗≤T

iNumGpFromStoragei,j,m∗,c∗,t∗

+
∑

i,j,m∗,c∗,t∗:
(i,j,m∗,c∗)∈MissionUpg

(c∗,m∗,c,m)∈ComponentMissionSuccessions
t≤t∗≤T

iNumGpInMissionUpgi,j,m∗,c∗,t∗

(6.32)

78

∀(c,m) ∈ SuccessorComponentMissions, t ≤ T∑
m∗,c∗:(c∗,m∗,c,m)∈

ComponentMissionSuccessions

(GpPerComponentMissionc∗,m∗ ∗ (maxPathLengthm∗ + 1))

∗ (1− bMissionCanFieldm,c,t)

≥
∑

i,m∗,c∗:
(i,m∗,c∗)∈Roles

(c∗,m∗,c,m)∈ComponentMissionSuccessions
InitialGpInMissioni,m∗,c∗>0

NumGpInMissioni,m∗,c∗,t

+
∑

i,j,m∗,c∗,t∗:
(i,j,m∗,c∗)∈Transitions

(c∗,m∗,c,m)∈ComponentMissionSuccessions
t≤t∗≤T

iNumGpFromStoragei,j,m∗,c∗,t∗

+
∑

i,j,m∗,c∗,t∗:
(i,j,m∗,c∗)∈MissionUpg

(c,∗,m∗,c,m)∈ComponentMissionSuccessions
t≤t∗≤T

iNumGpInMissionUpgradei,j,m∗,c∗,t∗

(6.33)

System Flow Conservation Constraints

• This constraint implies that the number of systems i in component c in storage at time
t, less the ones already spoken for, must always be at least as many as how many are
taken out at t. This fulfills the storage part of the Outflow Availability business
rule.

∀i, c, t ≤ T

NumSysInStorageExchangeablei,c,t ≥ 0 (6.34)

• This constraint ensures that the number of systems i in mission m in component c at
time t (not counting the ones that have been spoken for by future mission upgrades) is
nonnegative. This helps fulfill the mission part of the Outflow Availability business
rule. This constraint also fulfills the 1-Year Duty Minimum business rule.

∀(i,m, c) ∈ Roles, t ≤ T

NumSysInMissionExchangeablei,m,c,t ≥ 0 (6.35)

• This constraint assigns the initial populations of systems in storage to a specific com-
ponent. Once assigned, these systems can only be fielded to the specified component.
This helps fulfill the storage part of the Initial Populations business rule.

∀i, c ∑
c

iInitialInStoragec,i = InitialInStoragei (6.36)

79

• This constraint limits the pool of potential systems i in component c that can be
upgraded in storage at time t (purchased i’s are not included in this pool). This
partially prevents newly purchased systems in storage from being upgraded before
they are sent to mission, thus addressing the No Pre-Usage Upgrades business
rule.

∀i, c, t ≤ T∑
j,t∗:

(i,j)∈StorageUpg
t∗≤t+UpgProdDelayi,j

iNumInStorageUpgi,j,c,t∗

≤ iInitialSysInStoragei,c

+
∑
j,m,t∗:

(i,j,m,c)∈Transitions
t∗≤t

NumSysFromStoragei,j,m,c,t∗

+
∑
j,t∗:

(j,i)∈StorageUpg
t∗≤t

iNumInStorageUpgj,i,c,t∗

+
∑
J ,m,t∗:

(i,J ,m,c)∈FutureTransitionPurch
t∗≤t

NumSysReplacedi,J ,m,c,t∗ (6.37)

• This constraint is only used if pre-purchasing is turned off and ensures that all systems
i purchased or in storage-upgraded to component c at time period t must be fielded to
some mission m in component c in that same time period. This addresses the Optional
Pre-Purchasing business rule.
If allowPrePurchasing = 0

∀i, c, t ≤ T

NumSysPurchi,c,t

+
∑
j:

(j,i)∈StorageUpg

iNumInStorageUpgj,i,c,t

≤
∑
j,m:

(j,i,m,c)∈Transitions

NumSysFromStoragej,i,m,c,t (6.38)

• Constraints (6.39) and (6.40) ensure that any group of systems i that are retired from
some mission m in component c in time period t cannot be immediately re-fielded back
to the same mission and same component in the same time period. This fulfills the

80

No Retire and Re-Field business rule.

∀(i,m, c) ∈ InterimRoles, t ≤ T

GpTransitionLimitPerT imem ∗ bInterimGpCanFieldi,m,c,t
≥

∑
j∈Inflowi,m,c

iNumGpFromStoragej,i,m,c,t (6.39)

∀(i,m, c) ∈ InterimRoles, t ≤ T

GpTransitionLimitPerT imem ∗ (1− bInterimGpCanFieldi,m,c,t)

≥
∑

j∈Outflowi,m,c

iNumGpFromStoragei,j,m,c,t (6.40)

• Constraints (6.41) amd (6.42) ensure that newly purchased or in storage
upgraded systems i (excluding “hull” systems) may only remain in storage for
maxTimeAllowedInStorage time periods. That is, if a system is delivered to storage
by a purchase or an in storage upgrade in time t, then that system must be fielded
to a mission in time period t, t + 1, t + 2, . . . , or t + maxTimeAllowedInStorage. A
slack of max{PurchBatchSizei, maxMissionRequirementi}− 1 is allowed to remain
in storage indefinitely and not be fielded. Constraint (6.41) deals with systems that
do not have LRIP delivery or initial systems in storage. For systems that do have
either LRIP delivered to storage or initial storage inventory, constraint (6.42) ensures
that these systems may only remain in storage for maxTimeAllowedInStorage time
periods, beginning with the first time period that non-LRIP production is completed.
This fulfills the Fielding New Systems From Storage business rule.

∀i, c, t ≤ T −maxTimeAllowedInStorage where i 6∈ FreeInterimUpgSys
and i 6∈ SysWithLripOrInitialStorage∑

i∗,t∗:
i∗∈PurchasableSys,i∗=i

t∗≤t

NumSysPurchi∗,c,t∗

+
∑
j,t∗:

(j,i)∈StorageUpg
t∗≤t

iNumInStrorageUpgradedj,i,c,t∗

≤
∑
j,m,t∗:

(j,i,m,c)∈Transitions
t∗≤t+maxTimeAllowedInStorage

NumSysFromStoragej,i,m,c,t∗

+ max{PurchBatchSizei,maxMissionRequirementi} − 1 (6.41)

81

∀i, c, t ≤ T −maxTimeAllowedInStorage where i 6∈ FreeInterimUpgSys
and i ∈ SysWithLripOrInitialStorage∑

i∗,t∗:
i∗∈PurchasableSys,i∗=i

t∗≤t

NumSysPurchi∗,c,t∗

+
∑
j,t∗:

(j,i)∈StorageUpg
t∗≤t

iNumInStrorageUpgradedj,i,c,t∗

+
∑
p,t∗:

(p,i)∈LripProfiles
t∗<t

iLripDeliveredc,p,i,t

+ iInitialInStoragei,c

− TotalSysPopulation ∗ (1− bSysHasDeliveredComponenti,c,t)

≤
∑
j,m,t∗:

(j,i,m,c)∈Transitions
t∗≤t+maxTimeAllowedInStorage

NumSysFromStoragej,i,m,c,t∗

+ max{PurchBatchSizei,maxMissionRequirementi} − 1 (6.42)

• Constraint (6.43) ensures that any system i retired from any mission in component c
in time t and placed in storage must remain in storage for time period t. This prevents
those systems retired from being re-fielded in the same time period t. This rule does not
prevent systems retired from a mission and immediately upgraded to “hull” systems
in storage from being upgraded to a different system and being re-fielded in that same
time period. This fulfills the Disallow Instantaneous Cross-Mission Transfers
business rule.

∀i, c, t ≤ T

NumSysInStoragei,c,t

≥
∑
j,m:

(i,j,m,c)∈Transitions

NumSysFromStoragei,j,m,c,t

+
∑
J ,m,:

(i,J ,m,c)∈FuturePurchaseTransitions

NumSysReplacedi,J ,m,c,t

−
∑
j:

(i,j)∈StorageUpg
j∈FreeInterimUpgSys

iNumInStorageUpgi,j,c,t (6.43)

82

General Scheduling Constraints

• Constraints (6.44)–(6.46) ensure that at the beginning of the planning horizon, no
systems are purchased, in mission upgraded, or in storage upgraded for any component
earlier than the length of the associated delivery delay (plus an extra year if there is an
accompanying long lead). If this was not done, then costs could be incurred prior to
the beginning of the planning horizon. These fulfill the Early Transition Charging
business rule.

∀i ∈ PurchasableSys, c, t ≤
{
PurchDelayi + 1 if PrePurchCosti > 0
PurchDelayi if PrePurchCosti = 0

iNumBatchesPurchi,c,t = 0 (6.44)

∀(i, j,m, c) ∈MissionUpg, t ≤
{
UpgDelayi,j + 1 if PreUpgCosti,j > 0
UpgDelayi,j if PreUpgCosti,j = 0

iNumGpInMissionUpgi,j,m,c,t = 0 (6.45)

∀(i, j) ∈ StorageUpg, c, t ≤
{
UpgDelayi,j + 1 if PreUpgCosti,j > 0
UpgDelayi,j if PreUpgCosti,j = 0

iNumInStorageUpgi,j,c,t = 0 (6.46)

• This constraint ensures that the required percentage of initial systems i in mission m
for all components are retired (i.e., transitioned out) by time t. If it is not possible
to retire the required percentage due to other constraints, then this deficit is captured
by the iModernizedDeficiti,m,t variables. This fulfills the System Modernization
Requirements business rule.

∀(i,m) ∈ SysMissions, t ≤ T
where ModernPercenti,m,t > 0 and MissionT ierm = CurrentT ier∑

c

GpRetiredFromRoleSoFari,m,c,t ∗ SysPerGpm

+ iModernizedDeficiti,m,t

≥ModernPercenti,m,t ∗
∑
c

InitialSysInMissioni,m,c (6.47)

• These constraints ensure that the number of groups transitioned for mission m in all
components at time t is below a specified limit, fulfilling the Per-Period Mission

83

Modernization Limit business rule.

∀m, t ≤ T where GpTransitionLimitPerT imem <∞
and MissionT ierm = CurrentT ier∑

i,j,c:
(i,j,m,c)∈Transitions

NumGpTransiti,j,m,c,t

+
∑
i,J ,c:

(i,J ,m,c)∈FutureTransitions

iNumGpReplacedi,J ,m,c,t

≤ GpTransitionLimitPerT imem (6.48)

∀m,T < t ≤ T where GpTransitionLimitPerT imem <∞
and MissionT ierm = CurrentT ier∑

i,j,c:
(i,j,m,c)∈CoastablePurchTransitions

iNumGpCoastingPurchi,j,m,c,t

+
∑
i,j,c:

(i,j,m,c)∈CoastableUpgTransitions

iNumGpCoastingUpgi,j,m,c,t

+
∑
i,J ,c:

(i,J ,m,c)∈FutureTransitions

iNumGpReplacedi,J ,m,c,t

≤ GpTransitionLimitPerT imem (6.49)

• This constraint ensures that the cumulative number of groups of initial systems mod-
ernized for mission m from all components throughout the conventional and extended
planning horizon is below a specified limit. This fulfills the Cumulative Mission

84

Modernization Limit business rule.

∀m where GpTransitionLimitTotalm <∞ and MissionT ierm = CurrentT ier∑
i,j,c,t:

(i,j,m,c)∈Transitions
InitialSysInMissioni,m,c>0

t≤T

NumGpTransiti,j,m,c,t

+
∑
i,j,c,t:

(i,j,m,c)∈CoastablePurchTransitions
InitialSysInMissioni,m,c>0

T<t≤T

iNumGpCoastingPurchi,j,c,m,t

+
∑
i,j,c,t:

(i,j,m,c)∈CoastableUpgTransitions
InitialSysInMissioni,m,c>0

T<t≤T

iNumGpCoastingUpgi,j,c,m,t

+
∑
i,J ,c,t:

(i,J ,m,c)∈FutureTransitions
InitialSysInMissioni,m,c>0

t≤T

iNumGpReplacedi,J ,c,m,t

≤ GpTransitionLimitTotalm (6.50)

• This constraint ensures that the number of systems i in mission m in component c
meets or exceeds a certain level by time T , fulfilling the System Mandates business
rule.

∀(i,m, c) ∈MandatedRoles where MissionT ierm = CurrentT ier

NumSysInMissioni,m,c,T

+ iF inalMandateDeficiti,m,c ∗ SysPerGpm
≥ FinalMandatei,m,c (6.51)

• This constraint ensures for system obviation pairs (i, j) that system j can be delivered
only if system i has not been delivered at time t or earlier. In other words, j deliveries
can only occur before i deliveries. If an overlap o is specified, both systems can be
delivered for an overlap of o time periods, starting in the first time period in which
system i is delivered. This fulfills the System Obviation business rule.

∀(i, j, o) ∈ SysObviations, t, t∗ where i, j ∈ DeliverableSys and t∗ + o ≤ t ≤ T

bSysDeliveredj,t <= 1− bSysDeliveredi,t∗ (6.52)

• This constraint ensures that for each synchronization set s, the number of groups of
synchronized systems in the synchronized mission for the synchronized component is
always equal. This fulfills the Synchronization Sets business rule. Note that for any

85

set, such as Z = {z1, z2, z3}, we have the syntax that First(Z) = z1.

∀s,m ∈ SyncSetMissionss, t ≤ T where m 6= First(SyncSetMissionss)∑
i,m∗c:

(i,m∗)∈Roles
m∗=First(SyncSetMissionss)

i∈SyncSetSyss
c=SyncSetComponentss

NumGpInMissioni,m∗,c,t =
∑
i,c:

(i,m,c)∈Roles
i∈SyncSetSyss

c=SyncSetComponentss

NumGpInMissioni,m,c,t

(6.53)

• Constraints (6.54)–(6.56) properly set the value of the bSysInStorageExchangeablei,c,t
indicator variable and then enforce the Storage Consumption Priority business
rule.

∀i, c, t ≤ T where ∃(i, j) ∈ StorageUpgUsePriorities
bSysInStorageExchangeablei,c,t ≤ NumSysInStorageExchangeablei,c,t (6.54)

∀i, c, t ≤ T where ∃(i, j) ∈ StorageUpgUsePriorities
TotalSysPopulation ∗ bSysInStorageExchangeablei,c,t

≥ NumSysInStorageExchangeablei,c,t (6.55)

∀i, c, t ≤ T where ∃(i, j) ∈ StorageUpgUsePriorities∑
j,j∗:

(i,j)∈StoragePriorityPair
(j,j∗)∈StorageUpg

t+UpgProdDelayj,j∗≤T

iNumInStorageUpgj,j∗,c,t+UpgProdDelayj,j∗

≤ (NumStorageUpg + 1) ∗ TotalSysPopulation
∗ (1− bSysInStorageExchangeablei,c,t) (6.56)

• Constraints (6.57) – (6.59) properly set bSysBeforePurchInStorageExchangeablei,c,t
and then enforce the Upgrades Trump Purchases business rule.

∀i ∈ StorageUpgBeforePurch, c, t ≤ T

bSysBeforePurchInStorageExchangeablei,c,t

≤ NumSysInStorageExchangeablei,c,t (6.57)

∀i ∈ StorageUpgBeforePurch, c, t ≤ T

TotalSysPopulation ∗ bSysBeforePurchInStorageExchangeablei,c,t
≥ NumSysInStorageExchangeablei,c,t (6.58)

86

∀i ∈ StorageUpgBeforePurch, c, t ≤ T∑
j:

(i,j)∈StorageUpg
j∈PurchasableSys

t+PurchProdDelayj≤T

iNumBatchesPurchj,c,t+PurchProdDelayj

≤ TotalSysPopulation ∗ (1− bSysBeforePurchInStorageExchangeablei,c,t)
(6.59)

• Constraint (6.60) enforces that each system i in component c is retired before exceeding
its economic useful life for time t in the conventional time horizon. This fulfills the
Economic Useful Life business rule.

∀(i,m, c) ∈ Roles, t ≤ T where t > SysUsefulLifei − InitialRoleAgei,m,c ≤ T
iSysY earAgeOveragesi,m,c,t

≥ InitialSysInMissioni,m,c

+

{
SysF ieldedToRoleSoFari,m,c,t−SysUsefulLifei if t > SysUsefulLifei

0 otherwise

− SysRetiredFromRoleSoFari,m,c,t (6.60)

Budget Constraints

• Constraints (6.61) – (6.63) combine to partially fulfill the Component Earmarks
business rule for all components in the conventional and extended time horizons. The
amount of each earmark spent in each component in each time period is captured in
fComponentEarmarkSpentc,t.

∀c, t ≤ T
fComponentEarmarkSpentc,t ≤ ComponentEarmarkc,t (6.61)

∀c, t ≤ T

fComponentEarmarkSpentc,t

≤ ComponentPurchAndUpgExpenseWithoutPfEarmarkc,t

+ FutureComponentPurchAndUpgExpenseWithoutPfEarmarkc,t

(6.62)

∀c, T < t ≤ T
fComponentEarmarkSpentc,t

≤ FutureComponentPurchAndUpgExpenseWithoutPfEarmarkc,t

(6.63)

87

• Constraints (6.64) – (6.69) combine to partially fulfill the Product Family Earmarks
business rule for all product families in the conventional and extended time horizons.
The amount of each earmark spent in each product family in each time period for pro-
duction is captured in fPfEarmarkSpentProductionp,t and for RDT&E is captured
in fPfEarmarkSpentRdtep,t.

∀p, t ≤ T
fPfEarmarkSpentProductionp,t + fPfEarmarkSpentRdtep,t

≤ PfEarmarkp,t (6.64)

∀p, t ≤ T

fPfEarmarkSpentProductionp,t

≤ PfPurchAndUpgExpensep,t

+NonPurchAndUpgPfExpensesp,t

+ FuturePfPurchAndUpgExpensesp,t

+ FutureNonPurchAndUpgPfExpensesp,t (6.65)

∀p, T < t ≤ T
fPfEarmarkSpentProductionp,t

≤ FuturePfPurchAndUpgExpensesp,t

+ FutureNonPurchAndUpgPfExpensesp,t (6.66)

∀p ∈ PfWithRdte, t ≤ T

fPfEarmarkSpentRdtep,t ≤ RdteEffortExpensep,t (6.67)

∀p ∈ PfWithRdteActive, T < t ≤ T
fPfEarmarkSpentRdtep,t ≤ bPfActivep,t ∗ PfRdteActiveCostp (6.68)

∀p 6∈ PfWithRdte, t ≤ T
fPfEarmarkSpentRdtep,t = 0 (6.69)

• Constraints (6.70) and (6.73) partially fulfill the Component Earmarks business
rule. Constraints (6.70), (6.72), and (6.73) partially fulfill the Product Family Ear-
marks business rule. Constraints (6.70) – (6.73) combine to fulfill the Per-Period
Budgets business rule for time periods in the conventional time horizon. Note that
some future programs may incur costs during the conventional time horizon that must
be accounted for. Also note that if other constraints throughout the formulation force a
particular per-period budget to be violated, then the amount of overage is determined
by the appropriate budget constraint and stored in the “Overrun” variables. These
variables can help the analyst pin-point where particular business rule violations arise

88

due to overly restrictive input parameters. In constraint (6.73), bProc, bOS, and bRdte
are user-specified binary indicators that take on value 1 if that expense type is included
in the combined expense, and 0 otherwise. Constraints (6.70) and (6.73) enforce the
yearly budgets with earmarks.

∀t ≤ T where ProcureBudgett <∞
ProcureExpenset + FutureProcureExpenset

≤ ProcureBudgett

+ CombinedComponentEarmarkSpentt

+ CombinedPfEarmarkSpentProductiont

+ fProcureBudgetOverrunt (6.70)

∀t ≤ T where OSBudgett <∞
OSExpenset + FutureOSExpenset

≤ OSBudgett + fOSBudgetOverrunt (6.71)

∀t ≤ T where RdteBudgett <∞
RdteExpenset + FutureRdteExpenset

≤ RdteBudgett

+ CombinedPfEarmarkSpentRdtet

+ fRdteBudgetOverrunt (6.72)

∀t ≤ T where CombinedBudgett <∞
bProc ∗ (ProcureExpenset + FutureProcureExpenset)

+ bOS ∗ (OSExpenset + FutureOSExpenset)

+ bRdte ∗ (RdteExpenset + FutureRdteExpenset)

≤ CombinedBudgett

+ bProc ∗ (CombinedComponentEarmarkSpentt

+ CombinedPfEarmarkSpentProductiont)

+ bRdte ∗ CombinedPfEarmarkSpentRdtet
+ fCombinedBudgetOverrunt (6.73)

• Constraints (6.74) and (6.77) partially fulfill the Component Earmarks business
rule. Constraints (6.74), (6.76), and (6.77) partially fulfill the Product Family Ear-
marks business rule. Constraints (6.74) – (6.77) combine to fulfill the Per-Period
Budgets business rule in the extended time horizon. They operate in a manner simi-
lar to the previous constraints above, but only need to limit expenses incurred in the

89

extended time horizon.

∀ T < t ≤ T where FutureProcureBudgett <∞
FutureProcureExpenset

≤ FutureProcureBudgett

+ CombinedComponentEarmarkSpentt

+ CombinedPfEarmarkSpentProductiont

+ fFutureProcureBudgetOverrunt (6.74)

∀ T < t ≤ T where FutureOSBudgett <∞
FutureOSExpenset

≤ FutureOSBudgett + fFutureOSBudgetOverrunt (6.75)

∀ T < t ≤ T where FutureRdteBudgett <∞
FutureRdteExpenset

≤ FutureRdteBudgett + fFutureRdteBudgetOverrunt (6.76)

∀ T < t ≤ T where CombinedBudgett <∞
bProc ∗ FutureProcureExpenset

+ bOS ∗ FutureOSExpenset
+ bRdte ∗ FutureRdteExpenset
≤ FutureCombinedBudgett

+ bProc ∗ (CombinedComponentEarmarkSpentt

+ CombinedPfEarmarkSpentProductiont)

+ bRdte ∗ CombinedPfEarmarkSpentRdtet
+ fFutureCombinedBudgetOverrunt (6.77)

• Constraints (6.78) – (6.81) combine to fulfill the Cumulative Budgets business rule.
“Overrun” variables are used here in a similar manner to the previous per-period
constraints. Note that a cumulative budget applies both to the future and non-future
system expenses across both the conventional and extended time horizons.

if TotalProcureBudget <∞∑
t≤T

ProcureExpenset +
∑
t≤T

FutureProcureExpenset

≤ TotalProcureBudget+ fTotalProcureBudgetOverrun (6.78)

if TotalOSBudget <∞∑
t≤T

OSExpenset +
∑
t≤T

FutureOSExpenset

≤ TotalOSBudget+ fTotalOSBudgetOverrun (6.79)

90

if TotalRdteBudget <∞∑
t≤T

RdteExpenset +
∑
t≤T

FutureRdteExpenset

≤ TotalRdteBudget+ fTotalRdteBudgetOverrun (6.80)

if TotalCombinedBudget <∞∑
t≤T

CombinedExpenset +
∑
t≤T

FutureCombinedExpenset

≤ TotalCombinedBudget+ fTotalCombinedBudgetOverrun (6.81)

Group Density Levels

• Constraints (6.82) and (6.83) ensure that the bTransitionedToDensityLeveli,m,` in-
dicator variable equals 1 if and only if there are ever any transitions to system i
in mission m for any component c and those transitions achieve a density level of
` ∈ UpgDensityLevelsm groups. These constraints partially fulfill the Minimum
Group Transition Density business rule.

∀(i,m) where ∃(i,m, `) ∈ UpgDensityF lags∑
j,c,t:

(j,i,m,c)∈Transitions
t≤T

NumGpTransitj,i,m,c,t

≥
∑

`∈UpgDensityLevelsm

(bTransitionedToDensityLeveli,m,` ∗ `) (6.82)

∀(i,m) where ∃(i,m, `) ∈ UpgDensityF lags∑
j,c,t:

(j,i,m,c)∈Transitions
t≤T

NumGpTransitj,i,m,c,t

≤
∑
`:

`∈UpgDensityLevelsm
` 6=max (UpgDensityLevelsm)

(bTransitionedToDensityLeveli,m,` ∗ `)

+
∑
c,`:

`∈UpgDensityLevelsm
`=max (UpgDensityLevelsm)

(bTransitionedToDensityLeveli,m,` ∗GpPerComponentMissionc,m)

(6.83)

• Constraint (6.84) ensures that system i in mission m across all components c can satisfy
at most 1 of the minimum transition density levels. Note that if system i never transi-
tions into system m at any time, then all three of the bTransitionedToDensityLevel

91

binaries will be 0. Together with (6.82) and (6.83), this fulfills the Minimum Group
Transition Density business rule.

∀(i,m) where ∃(i,m, `) ∈ UpgDensityF lags∑
`∈UpgDensityLevelsm

bTransitionedToDensityLeveli,m,` ≤ 1 (6.84)

• Constraints (6.85) and (6.86) ensure the bHasFinalDensityi,m,` indicator variable
equals 1 if and only if the cumulative number of groups of system i in mission m
for all components has density ` ∈ FinalDensityLevelsm groups at time T . Note
that final density constraints only apply to system types which are fielded to but never
retired from a given role. These constraints partially fulfill the Minimum Group
Final Density business rule.

∀(i,m, `) ∈ FinalDensityF lags∑
c:

(i,m,c)∈Roles

NumGpInMissioni,m,c,T

≥ (bHasFinalDensityi,m,` + TransitionedToRolei,m − 1) ∗ `

−

∑
c:

(i,m,c)∈Roles

GpRetiredFromRoleSoFari,m,c,T ∗ `
if ` = max(FinalDensityLevelsm)

0 otherwise

(6.85)

∀(i,m) where ∃(i,m, `) ∈ FinalDensityF lags∑
c:

(i,m,c)∈Roles

NumGpInMissioni,m,c,T

≤
∑
`:

`∈FinalDensityLevelsm
6̀=max (FinalDensityLevelsm)

(bHasFinalDensityi,m,` ∗ `)

+
∑
c,`:

`∈FinalDensityLevelsm
`=max (FinalDensityLevelsm)

(bHasFinalDensityi,m,` ∗GpPerComponentMissionc,m)

(6.86)

• Constraint (6.87) ensures that system i in mission m across all components can satisfy
at most 1 of the final transition density levels. Note that if system i never transitions
into system m for any component at any time, then all three of the bHasFinalDensity
binaries will be 0. Together with (6.85) and (6.86), this fulfills the Minimum Group
Final Density business rule.

∀(i,m) where ∃(i,m, `) ∈ FinalDensityF lags∑
`∈FinalDensityLevelsm

bHasFinalDensityi,m,` ≤ 1 (6.87)

92

System Production Constraints

• Constraints (6.88) and (6.89) ensure that the bSysDeliveredComponenti,c,t flag is 1 if
and only if at least one of system i is delivered to component c in time period t. This
flag is then used to help fulfill the Delivery Implies Fielding business rule. It is also
used to set the bSysDeliveredi,t flag.

∀i ∈ DeliverableSys, c, t ≤ T

bSysDeliveredComponenti,c,t ≤ NumSysDeliveredComponenti,c,t (6.88)

∀i ∈ DeliverableSys, c, t ≤ T

TotalSysPopulation ∗ bSysDeliveredComponenti,c,t
≥ NumSysDeliveredComponenti,c,t (6.89)

• Constraints (6.90)-(6.92) ensure that the bSysHasDeliveredComponenti,c,t flag is 1 if
and only if at least one of system i has been delivered to component c at or before
time period t. This flag is then used to help fulfill the Fielding New Systems from
Storage business rule.

∀i ∈ DeliverableSys, c, t ≤ T

bSysHasDeliveredComponenti,c,t ≥ bSysDeliveredComponenti,c,t (6.90)

∀i ∈ DeliverableSys, c, t ≤ T

bSysHasDeliveredComponenti,c,t ≤
∑
t∗≤t

bSysDeliveredComponenti,c,t∗ (6.91)

∀i ∈ DeliverableSys, c, t ≤ T − 1

bSysHasDeliveredComponenti,c,t ≤ bSysHasDeliveredComponenti,c,t+1

(6.92)

• Constraints (6.93) and (6.94) ensure that the bSysDeliveredi,t flag is 1 if and only at
least one of system i is delivered in time period t. This flag is then used to help fulfill
a variety of business rules.

∀i ∈ DeliverableSys, c, t ≤ T

bSysDeliveredi,t ≥ bSysDeliveredComponenti,c,t (6.93)

∀i ∈ DeliverableSys, t ≤ T

bSysDeliveredi,t ≤
∑
c

bSysDeliveredComponenti,c,t (6.94)

93

• If a system i is not a free interim upgrade, then this constraint ensures that i cannot be
delivered to component c at time t unless it is also fielded to a mission in component c
now or at some subsequent time. This avoids unnecessary production costs and fulfills
the Delivery Implies Fielding business rule.

∀i, c, t ≤ T where i ∈ DeliverableSys and i 6∈ FreeInterimUpgSys∑
j,m,t∗:

(j,i,m,c)∈Transitions
t≤t∗≤T

NumGpTransitj,i,m,c,t∗ ≥ bSysDeliveredComponenti,c,t (6.95)

• Constraints (6.96) and (6.97) ensure that the bSysEverDeliveredi flag is 1 if and only
if system i ever delivered throughout the conventional planning horizon. This flag will
then determine which LRIP profiles to activate.

∀i ∈ DeliverableSys, t ≤ T

bSysEverDeliveredi ≥ bSysDeliveredi,t (6.96)

∀i ∈ DeliverableSys

bSysEverDeliveredi ≤
∑
t≤T

bSysDeliveredi,t (6.97)

Product Family Constraints

• Constraints (6.98) and (6.99) ensure that for each product family having a minimum
production rate, the bPfDeliveredp,t indicator variable is 1 if and only if at least one of
the member systems of p is delivered at time t. This flag helps support the Minimum
Sustaining Rate, Production Smoothing, and Product Family Obviation busi-
ness rules.

∀p ∈ PfWithProdCtrls, t ≤ T

bPfDeliveredp,t ≤
∑

i∈ProductFamilyp∩DeliverableSys

bSysDeliveredi,t (6.98)

∀p ∈ PfWithProdCtrls, i ∈ ProductFamilyp ∩DeliverableSys, t ≤ T

bPfDeliveredp,t ≥ bSysDeliveredi,t (6.99)

• Constraints (6.100) and (6.101) ensure that for each product family having a minimum
cumulative production, the bPfEverDeliveredp indicator variable is 1 if and only if
at least one of the member systems of p is ever delivered. This flag helps support the
Family Minimum Cumulative Delivery business rule.

∀p ∈ PfWithProdCtrls

bPfEverDeliveredp ≤
∑
t≤T

bPfDeliveredp,t (6.100)

94

∀p ∈ PfWithProdCtrls, t ≤ T

bPfEverDeliveredp ≥ bPfDeliveredp,t (6.101)

• Constraints (6.102) and (6.103) ensure that for each product family p having an active
cost and for each t, the bPfActivep,t flag is 1 if and only if some member systems
of p are in production or administrative periods (for either LRIP or FRP) at time t.
This flag supports the Active Product Families and Family Per-Period Costs
business rules.

∀p ∈ PfWithAnyActive, t ≤ T
bPfActivep,t

≤
∑

i∈ProductFamilyp

(NumSysInProductioni,t +NumSysInAdminPeriodi,t)

+

∑

i∈ProductFamilyp

NumLripSysActivei,t t ≤ T

0 t > T
(6.102)

∀p ∈ PfWithAnyActive, t ≤ T
10 ∗ TotalSysPopulation ∗ bPfActivep,t

≥
∑

i∈ProductFamilyp

(NumSysInProductionp,t +NumSysInAdminPeriodi,t)

+

∑

i∈ProductFamilyp

NumLripSysActivei,t t ≤ T

0 t > T
(6.103)

• Constraints (6.104)–(6.106) ensure that for each product family p having a start-up cost
profile, the flag bPfStartupp,t is 1 if and only if time t is the first time that a member
system of p enters a FRP delay period. This helps fulfill the Family Start-Up Costs
business rule.

∀p ∈ PfWithStartup, t ≤ T

bPfStartupp,t

≤
∑

i∈ProductFamilyp

(NumSysInProductioni,t +NumSysInAdminPeriodi,t)

(6.104)

∀p ∈ PfWithStartup, t ≤ T

10 ∗ TotalSysPopulation ∗
∑
t∗≤t

bPfStartupp,t∗

≥
∑

i∈ProductFamilyp

(NumSysInProductioni,t +NumSysInAdminPeriodi,t)

(6.105)

95

∀p ∈ PfWithStartup∑
t≤T

bPfStartupp,t ≤ 1 (6.106)

• Constraints (6.107)–(6.109) ensure that for each product family p having LRIP, the
bPfFrpStartedp,t flag is 1 if and only if time t is the first time that a member system
of p delivers FRP assets. This helps fulfill the LRIP Timing business rule.

∀p ∈ PfWithLrip, t ≤ T

bPfFrpStartedp,t ≤
∑

i∈ProductFamilyp∩DeliverableSys

bSysDeliveredi,t (6.107)

∀p, i, t ≤ T where p ∈ PfWithLrip and i ∈ ProductFamilyp ∩DeliverableSys∑
t∗≤t

bPfFrpStartedp,t∗ ≥ bSysDeliveredi,t (6.108)

∀p ∈ PfWithLrip∑
t≤T

bPfFrpStartedp,t ≤ 1 (6.109)

• Constraints (6.110) – (6.112) ensure that for each product family p with a fielding
ratio, the bPfF irstY earF ieldingp,t flag is 1 if and only if time t is the first time that
a member system of p is fielded to any component. This helps fulfill the Product
Family Ratios business rule.

∀p ∈ PfWithRatios, t ≤ T

bPfFirstY earF ieldingp,t ≤
∑
c

PfSysF ieldedp,c,t (6.110)

∀p ∈ PfWithRatios, t ≤ T

TotalSysPopulation ∗
∑
t∗≤t

bPfF irstY earF ieldingp,t∗

≥
∑
c

PfSysF ieldedp,c,t (6.111)

∀p ∈ PfWithRatios∑
t

bPfF irstY earF ieldingp,t ≤ 1 (6.112)

96

• Constraints (6.113) – (6.115) ensure that for each product family with a fielding ratio,
the bPfLastY earF ieldingp,c,t flag is 1 if and only if time t is the last time that a
member system of p is fielded to component c. This helps fulfill the Product Family
Ratios business rule.

∀p ∈ PfWithRatios, c, t ≤ T

bPfLastY earF ieldingp,c,t ≤ PfSysF ieldedp,c,t (6.113)

∀p ∈ PfWithRatios, c, t ≤ T

TotalSysPopulation ∗
∑
t∗≥t

bPfLastY earF ieldingp,c,t∗

≥
∑
c

PfSysF ieldedp,c,t (6.114)

∀p ∈ PfWithRatios, c∑
t

bPfLastY earF ieldingp,c,t ≤ 1 (6.115)

• Constraint (6.116) ensures that for product family p with ratios, if any systems from
this product family begin fielding to one component, then systems must begin fielding
to all other components. This helps fulfill the Product Family Ratios business rule.

∀p ∈ PfWithRatios, c∑
t

bPfF irstY earF ieldingp,t ≤
∑
t

bPfLastY earF ieldingp,c,t (6.116)

• Constraints (6.117) – (6.119) ensure that for each product family with a fielding ratio,
the bPfEnforceRatiop,c,t flag is 1 if and only if the ratio for product family p is
enforced for component c in time t. This helps fulfill the Product Family Ratios
business rule.

∀p ∈ PfWithRatios, c, t ≤ T∑
t∗≤t

bPfF irstY earF ieldingp,t∗

+
∑

t∗>t+PfRatioWindowp−1

bPfLastY earF ieldingp,c,t∗ − 1

≤ bPfEnforceRatiop,c,t (6.117)

∀p ∈ PfWithRatios, c, t ≤ T∑
t∗≤t

bPfF irstY earF ieldingp,t∗ ≥ bPfEnforceRatiop,c,t (6.118)

97

∀p ∈ PfWithRatios, c, t ≤ T∑
t∗>t+PfRatioWindowp−1

bPfLastY earF ieldingp,c,t∗ ≥ bPfEnforceRatiop,c,t

(6.119)

• Constraints (6.120) – (6.122) ensure that fielding to product family p is within the
variance of the ratios for each component and time t. The partially fulfills the Product
Family Ratios business rule.

∀p, c1, c2, t ≤ T − PfRatioWindowp + 1

where PfComponentRatiosp,c1 ≥ PfComponentRatiosp,c2 > 0

PfSysF ieldedWindowp,c1,t

≤ PfComponentRatiosp,c1
PfComponentRatiosp,c2

∗ (1 + PfRatioV ariancep)

∗ PfSysF ieldedWindowp,c2,t

+ TotalSysPopulation ∗ (1− bPfEnforceRatiop,c2,t) (6.120)

∀p, c1, c2, t ≤ T − PfRatioWindowp + 1

where PfComponentRatiosp,c1 ≥ PfComponentRatiosp,c2 > 0

PfSysF ieldedWindowp,c1,t

≥ PfComponentRatiosp,c1
PfComponentRatiosp,c2

∗ (1− PfRatioV ariancep)

∗ PfSysF ieldedWindowp,c2,t

− PfComponentRatiosp,c1
PfComponentRatiosp,c2

∗ (1− PfRatioV ariancep)

∗ TotalSysPopulation ∗ (1− bPfEnforceRatiop,c1,t) (6.121)

∀p ∈ PfWithRatios, c where PfComponentRatiosp,c = 0∑
t≤T

PfSysF ieldedp,c,t = 0 (6.122)

• This constraint ensures that for each product family p that disallows gaps, all systems
in the family must be delivered to any component during a set of contiguous time
periods. This satisfies the Delivery Gaps business rule.

∀p, t, t∗ where PfAllowGapsp = 0 and t∗ + 1 < t ≤ T

bPfDeliveredp,t − bPfDeliveredp,t−1 + bPfDeliveredp,t∗ ≤ 1 (6.123)

• Constraints (6.124) and (6.125) ensure that each product family p having a startup
profile can only become active at times when the entire start-up cost profile would be

98

incurred (i.e., no parts of the cost profile occur before or after the planning horizon).
This partially fulfills the Early/Late Transition Charging business rule.

∀p ∈ PfWithStartup, t ≤ T where
∑

t≤t∗<T

PfStartupCostSchedulep,−t∗ > 0

bPfStartupp,t = 0 (6.124)

∀p ∈ PfWithStartup, t ≤ T where
∑

T−t<t∗<T

PfStartupCostSchedulep,t∗ > 0

bPfStartupp,t = 0 (6.125)

• This constraint ensures that the number of systems delivered by each product family
to all components is greater than or equal to the specified requirment for that product
family for each time period. This fulfills the Family Minimum Per-Period Delivery
business rule.

∀p, t ≤ T where PfDeliveryMinp,t > 0∑
i:

i∈ProductFamilyp

NumSysDeliveredi,t + iPfDeliveryDeficitp,t

≥ PfDeliveryMinp,t (6.126)

• This constraint ensures that the number of systems delivered each time period by each
product family to all components is less than the specified capacity. This fulfills this
Family Maximum Per-Period Delivery business rule.

∀p, t ≤ T where PfDeliveryMaxp,t <∞∑
i∈ProductFamilyp

NumSysDeliveredi,t ≤ PfDeliveryMaxp,t (6.127)

• This constraint ensures that the cumulative number of systems delivered by each prod-
uct family to all components is more than the specified capacity if systems are ever
delivered to the product family. This fulfills this Family Minimum Cumulative
Delivery business rule.

∀p where PfTotalDeliveryMinp > 0∑
i,t:

i∈ProductFamilyp
t≤T

NumSysDeliveredIncludingLripProducedi,t

+
∑
i,t:

i∈ProductFamilyp
i∈CoastableSys

T<t≤T

NumCoastingSysDeliveredi,t

≥ bPfEverDeliveredp ∗ PfTotalDeliveryMinp (6.128)

99

• This constraint ensures that the cumulative number of systems delivered by each prod-
uct family to all components is less than the specified capacity. This fulfills this Family
Maximum Cumulative Delivery business rule.

∀p where PfTotalDeliveryMaxp <∞∑
i,t:

i∈ProductFamilyp
t≤T

NumSysDeliveredIncludingLripProducedi,t

+
∑
i,t:

i∈ProductFamilyp
i∈CoastableSys

T<t≤T

NumCoastingSysDeliveredi,t

≤ PfTotalDeliveryMaxp (6.129)

• This constraint ensures that if systems are delivered from product family p to any
components at time t, then the number of systems delivered must at least meet the
minimum sustaining rate for that family. This fulfills the Minimum Sustaining
Rate business rule.

∀p, t < T where 1 < PfMsrp < PfDeliveryMaxp,t∑
i∈ProductFamilyp

NumSysDeliveredi,t

≥ bPfDeliveredp,t ∗ PfMsrp

− (1− bPfDeliveredp,t+1) ∗ TotalSysPopulation (6.130)

• Constraint (6.131) partially fulfills the RDT&E Costs business rule by enforcing that
an RDT&E delay is disallowed if any of the associated costs extend into future time
periods.

∀p ∈ PfWithRdteDelays, d ∈ AllowedRdteDelaysp
where HasRdteInFutureT imePeriodp,d = 1

bRdteDelayp,d = 0 (6.131)

• Constraints (6.132)–(6.135) combine to enforce the RDT&E Costs business rule when
non-zero RDT&E delays are allowed. They are enforced if and only if the delays are
allowed.

If EnableRdteDelays = 1

∀p ∈ PfWithRdteDelays, d

bRdteDelayp,d ≤
∑
i:

i∈ProductFamilyp∩DeliverableSys
F irstAvailablei+d≤T

bSysDeliveredi,F irstAvailablei+d (6.132)

100

∀p ∈ PfWithRdteDelays, d, i where i ∈ ProductFamilyp ∩DeliverableSys
and FirstAvailablei + d ≤ T∑

d∗≤d

bRdteDelayp,d∗ ≥ bSysDeliveredi,F irstAvailablei+d (6.133)

∀p ∈ PfWithRdteDelays∑
d

bRdteDelayp,d ≤ 1 (6.134)

∀p ∈ PfWithRdteDelays, d /∈ AllowedRdteDelaysp∑
d

bRdteDelayp,d = 0 (6.135)

• Constraints (6.136)–(6.138) combine to enforce legacy RDT&E behavior if the param-
eter EnableRdteDelays = 0. Note that this does not imply that systems in a product
family with RDT&E cost profiles can only start on time or not at all. Instead, legacy
behavior allows systems in the product family to start at any time, as long as the
0-delay cost profile is incurred.

If EnableRdteDelays = 0

∀p ∈ PfWithRdteDelays, d > 0

bRdteDelayp,d = 0 (6.136)

∀p ∈ PfWithRdteDelays

bRdteDelayp,0 ≤
∑
i,t:

i∈ProductFamilyp∩DeliverableSys
t≤T

bSysDeliveredi,t (6.137)

∀p ∈ PfWithRdteDelays, i, t ≤ T where i ∈ ProductFamilyp ∩DeliverableSys
bRdteDelayp,0 ≥ bSysDeliveredi,t (6.138)

LRIP Constraints

• Constraints (6.139)–(6.141) ensure that the bLripSysBaseY earp,i,t flag is 1 if and only
if 1) product family p enters full-rate production at time t and, 2) system i is ever
delivered. This ensures that LRIP profiles from different systems in a product family

101

will all line up with the beginning of FRP for that family, fulfilling the LRIP Timing
business rule.

∀(p, i) ∈ LripProfiles, t ≤ T

bLripSysBaseY earp,i,t ≤ bPfFrpStartedp,t (6.139)

∀(p, i) ∈ LripProfiles, t ≤ T

bLripSysBaseY earp,i,t ≤ bSysEverDeliveredi (6.140)

∀(p, i) ∈ LripProfiles, t ≤ T

bLripSysBaseY earp,i,t ≥ bSysEverDeliveredi + bPfFrpStartedp,t − 1

(6.141)

• This constraint ensures that for all systems i in product family p with an LRIP profile
cannot begin full-rate production for those systems until all delays are complete. Here,
the binary parameter ψp,i takes value 1 if LripPreCostp,i > 0 and 0 otherwise. This
partially satisfies the Early/Late Transition Charging business rule.

∀(p, i) ∈ LripProfiles, t∗ ∈ LripY ears, t where LripPreProductionp,i,t∗ > 0

and t <= t∗ + LripDelayp,i + ψp,i

bLripSysBaseY earp,i,t = 0 (6.142)

• Constraint (6.143) ensures that for all systems i in product family p with an LRIP
profile that the total number of LRIP systems that finish production in time t, denoted
by LripProducedp,i,t, are partitioned into components chosen by the optimization. This
partially satisfies the LRIP Profiles business rule.

∀(p, i) ∈ LripProfiles, t ≤ T∑
c

iLripProducedc,p,i,t = LripProducedp,i,t (6.143)

• Constraint (6.144) ensures that for all systems i in product family p with
an LRIP profile that the total number of LRIP systems delivered in time t, denoted by
LripDeliveredp,i,t, are partitioned into components chosen by the optimization. This
partially satisfies the LRIP Profiles business rule.

∀(p, i) ∈ LripProfiles, t ≤ T∑
c

iLripDeliveredc,p,i,t = LripDeliveredp,i,t (6.144)

• Constraint (6.145) ensures that all consumed seed systems i, denoted by
LripSeedsConsumedi,t, are partitioned into components chosen by the optimization.
This partially satisfies the LRIP Profiles business rule.

∀i, t ≤ T∑
c

iLripSeedsConsumedc,i,t = LripSeedsConsumedi,t (6.145)

102

• Constraint (6.146) ensures that for all systems i in product family p with an LRIP
profile that the total number of LRIP systems delivered in time t to component c
cannot exceed the total number of LRIP systems that have completed production for
component c in time t. This partially satisfies the LRIP Profiles business rule.

∀c, (p, i) ∈ LripProfiles, t ≤ T

iLripDeliveredc,p,i,t <= iLripProducedc,p,i,t (6.146)

Production Smoothing Constraints

• These constraints ensure that the total number of systems i produced for any compo-
nent for product family p, when that product family is in production, for each time
period t is within a certain variance of that family’s median production level. This
fulfills the Production Smoothing business rule.

∀p, t where MaxDeliveryV ariancep ≥ 0 and RampUpp < t ≤ T∑
i∈ProductFamilyp

NumSysDeliveredi,t

≤ (1 + 0.5 ∗MaxDeliveryV ariancep) ∗ fMedianDeliveryLevelp (6.147)

∀p, t where MaxDeliveryV ariancep ≥ 0 and RampUpp < t < T − 1∑
i∈ProductFamilyp

NumSysDeliveredi,t

≥ (1− 0.5 ∗MaxDeliveryV ariancep) ∗ fMedianDeliveryLevelp

−
∑

t∗∈{0,...,RampUpp}

(1− bPfDeliveredp,t−t∗) ∗ TotalSysPopulation

− (1− bPfDeliveredp,t+1) ∗ TotalSysPopulation (6.148)

• This constraint ensures that for each product family p having a ramp-up, the number
of systems delivered to all components during ramp-up is non-decreasing. This fulfills
the Production Ramp-up business rule.

∀p, t where MaxDeliveryV ariancep ≥ 0 and RampUpp > 0 and 1 < t ≤ T∑
i∈ProductFamilyp

NumSysDeliveredi,t

≥
∑

i∈ProductFamilyp

NumSysDeliveredi,t−1

−
{

0 if t ≤ RampUpp + 1
bPfDeliveredp,t−RampUpp−1 ∗ TotalSysPopulation if t > RampUpp + 1

− (1− bPfDeliveredp,t) ∗ TotalSysPopulation (6.149)

103

• This constraint ensures for product family obviation pairs (p, q) that once any system
from p is delivered, systems from q can no longer be delivered. In other words, deliveries
from q can only occur before deliveries from p. This fulfills the Product Family
Obviation business rule.

∀(p, q) ∈ PfObviations, t, t∗ where t∗ ≤ t ≤ T

bPfDeliveredp,t∗ <= 1− bPfDeliveredq,t (6.150)

Coasting Systems Constraints

• Constraints (6.151) – (6.152) set the coasting level of coasting system i in mission m
for component c in all time periods t that coasting is enforced. This partially fulfills
the Coasting System Fielding business rule.

∀(i,m, c) ∈ CoastableRoles, T < t < T
−GpPerComponentMissionc,m ∗ (2− bIsCoastingi,m,c,t − bIsCoastingi,m,c,t+1)

+ iCoastingLeveli,m,c

≤
∑

j:(j,i,m,c)∈CoastablePurchaseTransitions

iNumGpCoastingPurchj,i,m,c,t

+
∑

j:(j,i,m,c)∈CoastableUpgradeTransitions

iNumGpCoastingUpgj,i,m,c,t (6.151)

∀(i,m, c) ∈ CoastableRoles, T < t ≤ T
GpPerComponentMissionc,m ∗ (1− bIsCoastingi,m,c,t)

+ iCoastingLeveli,m,c

≥
∑

j:(j,i,m,c)∈CoastablePurchaseTransitions

iNumGpCoastingPurchj,i,m,c,t

+
∑

j:(j,i,m,c)∈CoastableUpgradeTransitions

iNumGpCoastingUpgj,i,m,c,t (6.152)

• Constraints (6.153) – (6.154) ensure that the number of coasting systems produced in
the last conventional time frame is within half a purchase batch size so all coasting
systems have the opportunity to coast in future time periods. This partially fulfills the
Coasting System Fielding business rule.

∀i ∈ CoastableSys
NumSysDeliveredi,T − 0.5 ∗ PurchBatchSizei

≤
∑

m,c:(i,m,c)∈CoastableRoles

iCoastingLeveli,m,c ∗ SysPerGpm (6.153)

104

∀i ∈ CoastableSys
NumSysDeliveredi,T + 0.5 ∗ PurchBatchSizei

≥
∑

m,c:(i,m,c)∈CoastableRoles

iCoastingLeveli,m,c ∗ SysPerGpm (6.154)

• Constraint (6.155) ensures system type i in any mission m and any component c can
only coast if system type i was delivered in time T to any mission or component. This
partially fulfills the Coasting System Fielding business rule.

∀(i,m, c) ∈ CoastableRoles, T < t ≤ T
bIsCoastingi,m,c,t ≤ NumSysDeliveredi,T (6.155)

• Constraint (6.156) ensures that once there is only coasting system type i in mission m
in component c then we cease coasting of system i to mission m in component c. This
partially fulfills the Coasting System Fielding business rule.

∀(i,m, c) ∈ CoastableRoles, T < t ≤ T
GpPerComponentMissionc,m ∗ bIsCoastingi,m,c,t

≥
∑

j:(j,i,m,c)∈CoastablePurchTransitions

iNumGpCoastingPurchj,i,m,c,t

+
∑

j:(j,i,m,c)∈CoastableUpgTransitions

iNumGpCoastingUpgj,i,m,c,t (6.156)

• Constraint (6.157) ensures that once coasting system type i ceases production and
fielding to mission m in component c then it cannot restart coasting. This partially
fulfills the Coasting System Fielding business rule.

∀(i,m, c) ∈ CoastableRoles, T < t < T
bIsCoastingi,m,c,t ≥ bIsCoastingi,m,c,t+1 (6.157)

• Constraints (6.158) – (6.159) ensure that production for coasting systems are not al-
lowed to violate product family production minimums or variance bands in the the final
conventional time T . This partially fulfills the Coasting System Fielding business
rule.

∀p, (i,m, c) ∈ CoastableRoles, T < t ≤ T where 1 < PfMsrp ≤ PfDeliveryMaxp,T

and i ∈ ProductFamilyp
PfMsrp ∗ bIsCoastingi,m,c,t ≤

∑
i∗∈ProductFamilyp

NumSysDeliveredi∗,T (6.158)

105

∀p, (i,m, c) ∈ CoastableRoles, T < t ≤ T where 0 < MaxDeliveryV ariancep

and i ∈ ProductFamilyp
(1− 0.5 ∗MaxDeliveryV ariancep) ∗ fMedianDeliveryLevelp

≤
∑

i∗∈ProductFamilyp

NumSysDeliveredi∗,T

+ TotalSysPopulation ∗ (1− bIsCoastingi,m,c,t) (6.159)

• Constraint (6.160) ensures that the number of groups of system type i in mission m in
component c for all time t is non-negative. This partially fulfills the Coasting System
Fielding and the Constant System Populations business rules.

∀(i,m, c) ∈ Roles, t
NumGpInMissioni,m,c,t ≥ 0 (6.160)

Future Program Constraints

• Constraints (6.161) and (6.162) ensure that each future program F can be activated
if and only if at least one of the future systems in any component associated with
that program is also activated. These fulfill the first part of the Future Program
Activation business rule.

∀F ∑
c

J∈FutureProgramF

bFutureSysComponentJ ,c

≤ NumFutureSys ∗NumComponents ∗ bFutureProgramF (6.161)

∀F ∑
c

J∈FutureProgramF

bFutureSysComponentJ ,c ≥ bFutureProgramF (6.162)

• Constraints (6.163) and (6.164) ensure that each future system J is activated in com-
ponent c if and only if at least one group of non-future systems is replaced by J
in component c at some time t within the conventional or extended horizon. These
partially fulfill the part of the Future System Fielding business rule.

∀J , c ∑
i,m,t:

(i,J ,m,c)∈FutureTransitions
t≤T

iNumGpReplacedi,J ,m,c,t ≤ 10, 000 ∗ bFutureSysComponentJ ,c

(6.163)

106

∀J , c ∑
i,m,t:

(i,J ,m,c)∈FutureTransitions
t≤T

iNumGpReplacedi,J ,m,c,t ≥ bFutureSysComponentJ ,c

(6.164)

• Some future programs may only be activated if every associated future system is fielded
in every component. This constraint enforces that behavior of the programs F where
the the user has set the FieldAllWithinProgramF flag to 1. This fulfills the optional
portion of the Future Program Activation business rule.

∀F ,J ∈ FutureProgramF , c where FieldAllWithinProgramF = 1

bFutureProgramF ≤ bFutureSysComponentJ ,c (6.165)

• Constraints (6.166) and (6.167) ensure that once future systems start fielding to a
mission in a component, non-future systems are no longer allowed to field to that
mission in the component, neither by mission upgrades nor storage swaps. These fulfill
the Future Obviates Present business rule.

∀J , c
10, 000 ∗ (1− bFutureSysComponentJ ,c)

≥
∑
i,j,m,t:

(i,j,m,c)∈Transitions
m=FutureMissionMapJ

FutureSysF irstY earF ieldingJ≤t≤T

iNumGpFromStoragei,j,m,c,t (6.166)

∀J , c
10, 000 ∗ (1− bFutureSysComponentJ ,c)

≥
∑
i,j,m,t:

(i,j,m,c)∈Transitions
m=FutureMissionMapJ

FutureSysF irstY earF ieldingJ≤t≤T

iNumGpInMissionUpgi,j,m,c,t (6.167)

• This constraint ensures that if future system J is activated, then it must fielded ac-
cording to a fixed schedule given by the input FutureSysF ieldingProfileJ ,c,t. Note
that the optimization can still decided which non-future systems will be replaced first.
Together with (6.163) and (6.164), this satisfies the Future System Fielding business
rule.

∀J , c, t ≤ T∑
i,m:

(i,J ,m,c)∈FutureTransitions

iNumGpReplacedi,J ,m,c,t

= bFutureSysComponentJ ,c ∗ FutureSysF ieldingProfileJ ,c,t (6.168)

107

• Constraints (6.169) and (6.170) ensure that the number of future systems flowing in
for each component must not exceed the number of non-future systems in service that
are being replaced. This fulfills the Outflow Availability business rule in relation to
future systems.

∀(i,m, c) ∈ Roles∑
J ,t:

(i,J ,m,c)∈FutureTransitions
T<t≤T

iNumGpReplacedi,J ,m,c,t ≤ NumGpInMissioni,m,c,T

(6.169)

∀(i,m, c) ∈ Roles, 1 < t ≤ T∑
J :

(i,J ,m,c)∈FutureTransitions

iNumGpReplacedi,J ,m,c,t ≤ NumGpInMissioni,m,c,t−1

(6.170)

• This constraint ensures that all the future system types that are mandated to field are
actually fielded. This helps fulfill the Future System Fielding business rule.

∀J ∈MandatedFutureSys, c

bFutureSysComponentJ ,c + bFutureSysDeficitJ ,c = 1 (6.171)

• This constraint ensures that the correct number of groups of future systems that are
not fielded are calculated when the indicated future system does not field.

∀J , c
iFutureSysMandateDeficitJ ,c

=
∑
t

FutureSysF ieldingProfileJ ,c,t ∗ bFutureSysDeficitJ ,c (6.172)

• Constraints (6.173) and (6.174) ensure that the bFutureSysJ indicator variable equals
1 if and only if future system J is activated for any component c. These constraints
partially fulfill the Future Minimum Group Transition Density and Future
Minimum Group Final Density business rules.

∀J , c
bFutureSysJ ≥ bFutureSysComponentJ ,c (6.173)

∀J

bFutureSysJ ≤
∑
c

bFutureSysComponentJ ,c (6.174)

108

• Constraints (6.175) and (6.176) ensure the bFutureTransitionedToDensityLevelJ ,m,`
indicator variable equals 1 if and only if there are ever any transitions to future system
J in mission m for any component and those transitions achieve a density level of ` ∈
UpgDensityLevelsm groups. These constraints partially fulfill the Future Minimum
Group Transition Density business rule.

∀(J ,m, `) ∈ FutureUpgDensityF lags∑
i,t:

(i,J ,m,c)∈FutureTransitions

iNumGpReplacedi,J ,m,c,t

≥ (bFutureTransitionedToDensityLevelJ ,m,` + bFutureSysJ − 1) ∗ `
(6.175)

∀J where m = FutureMissionMapJ and ∃(J ,m, `) ∈ FutureUpgDensityF lags∑
i,t:

(i,J ,m,c)∈FutureTransitions

iNumGpReplacedi,J ,m,c,t

≤
∑
`:

`∈UpgDensityLevelsm
6̀=max(UpgDensityLevelsm)

(bFutureTransitionedToDensityLevelJ ,m,` ∗ `)

+
∑
`,c:

`∈UpgDensityLevelsm
`=max(UpgDensityLevelsm)

(
bFutureTransitionedToDensityLevelJ ,m,`∗
GpPerComponentMissionc,m

)

(6.176)

• Constraint (6.177) ensures that future system J in mission m over all components can
satisfy at most 1 of the future minimum transition density levels. Note that if future
system J never transitions into mission m in any component at any time, then all
three bFutureTransitionedToDensityLevel binaries will be 0. Together with (6.175)
and (6.176), this fulfills the Final Minimum Group Transition Density business
rule.

∀J where m = FutureMissionMapJ and ∃(J ,m, `) ∈ FutureUpgDensityF lags∑
`∈UpgDensityLevelsm

bFutureTransitionedToDensityLevelJ ,m,` ≤ 1 (6.177)

• Constraints (6.178) and (6.179) ensure that the bFutureHasFinalDensityJ ,m,` indi-
cator variable equals 1 if and only if future system J in mission m over all components
has a density level of ` ∈ FinalDensityLevelsm groups at time T . These constraints

109

partially fulfill the Future Minimum Group Final Density business rule.

∀(J ,m, `) ∈ FutureF inalDensityF lags∑
i,t:

(i,J ,m,c)∈FutureTransitions

iNumGpReplacedi,J ,m,c,t

≥ (bFutureHasFinalDensityJ ,m,` + bFutureSysJ − 1) ∗ ` (6.178)

∀J where m = FutureMissionMapJ and ∃(J ,m, `) ∈ FutureF inalDensityF lags∑
i,t:

(i,J ,m,c)∈FutureTransitions

iNumGpReplacedi,J ,m,c,t

≤
∑
`:

`∈FinalDensityLevelsm
6̀=max(FinalDensityLevelsm)

(bFutureHasFinalDensityJ ,m,` ∗ `)

+
∑
`,c:

`∈FinalDensityLevelsm
`=max(FinalDensityLevelsm)

(
bFutureHasFinalDensityJ ,m,`
∗GpPerComponentMissionc,m

)
(6.179)

• Constraint (6.180) ensures that future system J in mission m over all components can
satisfy at most 1 of the final transition density levels. Note that if future system J
never transitions into mission m in any component at any time, then all three of the
bFutureHasFinalDensity binaries will be 0. Together with (6.178) and (6.179), this
fulfills the Future Minimum Group Final Density business rule.

∀J where m = FutureMissionMapJ and ∃(J ,m, `) ∈ FutureF inalDensityF lags∑
`∈FinalDensityLevelsm

bFutureHasFinalDensityJ ,m,` ≤ 1 (6.180)

110

DISTRIBUTION:

1 Roy E. Rice
Teledyne Brown Engineering
300 Sparkman Drive
Huntsville, AL 35805-1912

1 Frank M. Muldoon
Applied Materials
5225 West Wiley Post Way, Suite 275
Salt Lake City, UT 84116

1 MS 1188 Dean A. Jones, 8830 (electronic copy)

1 MS 1188 Bruce M. Thompson, 8833 (electronic copy)

1 MS 1188 Craig R. Lawton, 8834 (electronic copy)

1 MS 1188 Alan S. Nanco, 8836 (electronic copy)

1 MS 1188 Dennis J. Anderson, 8836 (electronic copy)

1 MS 1188 Lucas A. Waddell, 8833 (electronic copy)

1 MS 1188 Stephen M. Henry, 8833 (electronic copy)

1 MS 1188 Matthew J. Hoffman, 8831 (electronic copy)

1 MS 1188 April M. Zwerneman, 8834 (electronic copy)

1 MS 1397 Peter B. Backlund, 5837 (electronic copy)

1 MS 1188 Darryl J. Melander, 9365 (electronic copy)

1 MS 0899 Technical Library, 9536 (electronic copy)

111

This page intentionally left blank.

v1.40

113

114

